Purpose-The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to exp...Purpose-The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to explore the effect of load amplitude,load frequency,presence of geogrid layer in ballast layer and ballast layer thickness on the behavior of track system.These variables are studied both experimentally and numerically.This paper examines the effect of geogrid reinforced ballast laying on a layer of clayey soil as a subgrade layer,where a half full scale railway tests are conducted as well as a theoretical analysis is performed.Design/methodologylapproach-The experimental tests work consists of laboratory model tests to investigate the reduction in the compressibility and stress distribution induced in soft clay under a ballast railway reinforced by geogrid reinforcement subjected to dynamic load.Experimental model based on an approximate half scale for general rail track engineering practice is adopted in this study which is used in Iraqi railways.The investigated parameters are load amplitude,load frequency and presence of geogrid reinforcement layer.A half fuli-scale railway was constructed for carrying out the tests,which consists of two rails 800 mm in iength with three w00den sleepers(900 mm×90 mm×90 mm).The ballast was overlying 500 mm thick clay layer.The tests were carried out with and without geogrid reinforcement,the tests were carried out in a well tied steel box of 1.5 m length X 1 m width X 1 m height.A series of laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid.Settlement in ballast and clay,was measured in reinforced and unreinforced ballast cases.In addition to the laboratory tests,the application of numerical analysis was made by using the finite element program PLAXIS 3D 2013.Findings-It was concluded that the settlement increased with increasing the simulated train load amplitude,there is a sharp increase in settlement up to the cycle 500 and after that,there is a gradual increase to level out between,2,500 and 4,500 cycles depending on the load frequency.There is a little increase in the induced settlement when the load amplitude increased from 0.5 to i ton,but it is higher when the load amplitude increased to 2 ton,the increase in settlement depends on the geogrid existence and the other studied parameters.Both experimental and numerical results showed the same behavior.The effect of load frequency on the settlement ratio is almost constant after 500 cycles.In general,for reinforced cases,the effect of load frequency on the settlement ratio is very small ranging between 0.5 and 2%compared with the unreinforcedcase.Originalitylvalue-Increasing the ballast layer thickness from 20 cm to 30 cm leads to decrease the settlement by about 50%.This ascertains the efficiency of ballast in spreading the waves induced by the track.展开更多
The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scann...The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.展开更多
The cross-level and twist irregularities are the most dangerous irregularity types that could cause wheel unloading with the risk of derailments and additional maintenance expenses.However,the mechanism of the irregul...The cross-level and twist irregularities are the most dangerous irregularity types that could cause wheel unloading with the risk of derailments and additional maintenance expenses.However,the mechanism of the irregularities initiation and development is unclear.The motivation of the present study was the previous experimental studies on the application of wide sleepers in the ballasted track.The long-term track geometry measurements with wide sleepers show an enormous reduction of the vertical longitudinal irregularities compared to the conventional track.However,wide sleepers had higher twist and cross-section level irregularities.The present paper aims to explain the phenomenon by discrete element method(DEM)modeling the development process of sleeper inhomogeneous support at cross-level depending on the sleeper form.The DEM simulations show that the maximal settlement intensity is up to 3.5 times lower for a wide sleeper in comparison with the conventional one.Nevertheless,the cross-level differential settlements are almost the same for both sleepers.The particle loading distribution after all loading cycles is concentrated on the smaller area,up to the half sleeper length,with fully unloaded zones under sleeper ends.Ballast flow limitation under the central part of the sleeper could improve the resilience of wide sleepers to the development of cross-level irregularities.The mechanism of initiation of the cross-level irregularity is proposed,which assumes the loss of sleeper support under sleeper ends.The further growth of inhomogeneous settlements along the sleeper is assumed as a result of the interaction of two processes:ballast flow due to dynamic impact during void closing and on the other side high pressure due to the concentration of the pressure under the middle part of the sleeper.The DEM simulation results support the assumption of the mechanism and agree with the experimental studies.展开更多
This work aims to study the modeling and sizing of a floor reinforced by ballasted columns. We are studying the system of reinforcement by ballasted columns because this technique is able to replace deep foundations t...This work aims to study the modeling and sizing of a floor reinforced by ballasted columns. We are studying the system of reinforcement by ballasted columns because this technique is able to replace deep foundations that are technically difficult to realize and their cost is higher. The modelling and dimensioning of foundations on a ballasted column will be an important contribution to the state of the art of this method because it will highlight the mode of transfer of loads, and will expose the induced deformations by also allowing to verification criteria of bearing capacity and allowable settlement according to geometric information of the model. The columns on a substrate located at 9 m have a length of 9 m and a diameter of 40 cm and were obtained by incorporating ballast of granular class 0/31.5 of internal friction angle of 38˚ and a density weight of 21 kN/m3. The choice of this method is based on the geotechnical characteristics of the initial soil. Thus, identification and characterization tests were carried out to estimate the bearing capacity and the settlement giving respectively 125 kPa and 57 cm. These results show the ground does not have sufficient mechanical properties to withstand the loads transmitted by the tank. By adopting the reinforcement of the soil with ballasted columns, numerical calculations show that after applying a load equal to 265.1 KPa, 20 cm vertical settlement and 17 cm horizontal displacement were obtained. This is in the tolerable deformation range for our tank, namely, less than 20 cm. Analytically, in addition to reducing settlement, ballasted columns, Due to their high stiffness, they have effectively contributed to the increase of the permissible soil stress up to 257 kPa.展开更多
Cyclic load is widely adopted in laboratory to simulate the effect of train load on ballast bed.The effectiveness of such load equivalence is usually testified by having similar results of key concerns of ballast bed,...Cyclic load is widely adopted in laboratory to simulate the effect of train load on ballast bed.The effectiveness of such load equivalence is usually testified by having similar results of key concerns of ballast bed,such as deformation or stiffness,while the consistency of particle scale characteristics under two loading patterns is rarely examined,which is insufficient to well-understand and use the load simplification.In this study,a previous laboratory model test of ballast bed under cyclic load is rebuilt using 3D discrete element method(DEM),which is validated by dynamic responses monitored by high-resolution sensors.Then,train load having the same magnitude and amplitude as the cyclic load is applied in the numerical model to obtain the statistical characteristics of inter-particle contact force and particle movements in ballast bed.The results show that particle scale responses under two loading patterns could have quite deviation,even when macro-scale responses of ballast bed under two loading patterns are very close.This inconsistency indicates that the application scale of the DEM model should not exceed the validation scale.Moreover,it is important to examine multiscale responses to validate the effectiveness of load simplification.展开更多
The unsupported sleeper can change the load characteristics of ballast particles and thus affect the dynamic stability of a ballasted bed.In this work,a laboratory test was constructed on a ballasted track containing ...The unsupported sleeper can change the load characteristics of ballast particles and thus affect the dynamic stability of a ballasted bed.In this work,a laboratory test was constructed on a ballasted track containing unsupported sleepers.The ballasted track was excited by a wheelset,and the influence of unsupported sleepers on the dynamic stability of a ballasted bed was studied.The results show that the main frequency of the sleeper vibration appeared at 670 Hz,and the first-order rigid vibration mode at the frequency of 101 Hz had a significant effect on the condition without the unsupported sleeper.When the sleepers were continuously unsupported,the vibration damping effect of ballasted bed within the frequency range of 0–450 Hz was better than that at higher frequencies.Within the frequency range of 70–250 Hz,the vibration damping effect of the ballasted bed with unsupported sleepers was better than that without the unsupported sleeper.Owing to the excitation from the wheelset impact,the lateral resistance of the ballasted bed with unsupported sleepers whose hanging heights were 30,60,and 90 mm increased by 37.43%,12.25%,and 18.23%,respectively,while the lateral resistance of the ballasted bed without the unsupported sleeper remained basically unchanged.The unsupported sleeper could increase the difference in the quality of the ballasted bed between two adjacent sleepers.In addition,test results show that the hanging height of the unsupported sleeper had little effect on the lateral resistance of a ballasted bed without external excitation,but had an obvious effect on the rate of change of the lateral resistance of a ballasted bed and the acceleration amplitude of the sleeper vibration under the wheelset impact.展开更多
As a core infrastructure of high-speed railways,ballast layers constituted by graded crushed stones feature noteworthy particle movement compared with normal railways,which may cause excessive settlement and have detr...As a core infrastructure of high-speed railways,ballast layers constituted by graded crushed stones feature noteworthy particle movement compared with normal railways,which may cause excessive settlement and have detrimental effects on train operation.However,the movement behavior remains ambiguous due to a lack of effective measurement approaches and analytical methods.In this study,an image-aided technique was developed in a full-scale model test using digital cameras and a colorbased identification approach.A total of 1274 surface ballast particles were manually dyed by discernible colors to serve as tracers in the test.The movements of the surface ballast particles were tracked using the varied pixels displaying tracers in the photos that were intermittently taken during the test in the perpendicular direction.The movement behavior of ballast particles under different combinations of train speeds and axle loads was quantitatively evaluated.The obtained results indicated that the surface ballast particle movements were slight,mainly concentrated near sleepers under low-speed train loads and greatly amplified and extended to the whole surface when the train speed reached 360 km.h-1.Additionally,the development of ballast particle displacement statistically resembled its rotation.Track vibration contributed to the movements of ballast particles,which specifically were driven by vertical acceleration near the track center and horizontal acceleration at the track edge.Furthermore,the development trends of ballast particle movements and track settlement under long-term train loading were similar,and both stabilized at nearly the same time.The track performance,including the vibration characteristics,accumulated settlement,and sleeper support stiffness,was determined to be closely related to the direction and distribution of ballast particle flow,which partly deteriorated under high-speed train loads.展开更多
Foamed Polyurethane Solidified Ballasted Track(FPSBT),an innovative railway track,is formed by solidifying ballast bed with foamed polyurethane.Compared with the traditional Discrete Ballasted Track(DBT),FPSBT does no...Foamed Polyurethane Solidified Ballasted Track(FPSBT),an innovative railway track,is formed by solidifying ballast bed with foamed polyurethane.Compared with the traditional Discrete Ballasted Track(DBT),FPSBT does not require regular maintenance such as tamping and cleaning.However,limited studies exist on the mechanical properties of FPSBT.In this study,Laboratory experiments are conducted on polyurethane samples to investigate the effects of polyurethane density on the mechanical properties of FPSBT.Furthermore,the performance of DBT and FPSBT with different polyurethane densities are compared,and the recommended polyurethane density is obtained.FPSBT exhibited negligible accumulation of deformation under cyclic loads,indicating excellent performance of FPSBT owing to the anti-deformation properties of polyurethane.Further,a track load vehicle test is conducted.FPSBT exhibited better load-transmitting ability than DBT.Finally,the construction and application of FPSBT in China are introduced.This study is expected to contribute to realizing a more extensive application of FPSBT.展开更多
According to classical economic theory,external cost is the indirect,and uncompensated,social or environmental cost caused to an uninvolved third party that arises as an effect of another party’s activity.In light of...According to classical economic theory,external cost is the indirect,and uncompensated,social or environmental cost caused to an uninvolved third party that arises as an effect of another party’s activity.In light of this,the environmental cost caused by ballast water is considered as a negative externality.This paper aims to contribute by proposing that the environmental cost caused by ballast water can be determined through questionnaires,and that the imposition of a Pigouvian retributive tax is required to compensate for the environmental damage caused.The paper proceeds as follows.Firstly,ballast water management is discussed.Second,the environmental cost is discussed and it is asserted that it is important to have clear regulations and to update them frequently to prevent or minimize ballast water’s negative impact on the environment.Finally,it is suggested that the environmental cost caused by ballast water can be determined by questionnaires and,more specifically,by the WTP(Willingness to Pay)method,and that a special Pigouvian corrective taxation which can internalize this cost should be imposed.展开更多
To get the influence of the randomness of longitudinal resistance of ballast bed (LRBB) on track-bridge interaction, the statistical law of LRBB was studied with existing test data and the Shapiro-Wilk test. Based on ...To get the influence of the randomness of longitudinal resistance of ballast bed (LRBB) on track-bridge interaction, the statistical law of LRBB was studied with existing test data and the Shapiro-Wilk test. Based on the principle of track-bridge interaction, a rail-sleeper-bridge-pier integrated simulation model that could consider the randomness of LRBB was established. Taking a continuous beam bridge for the heavy-haul railway as an example, the effect of the randomness of LRBB on the mechanical behavior of continuous welded rail (CWR) on bridges under typical conditions was carefully examined with a random sampling method and the simulation model. The results show that the LRBB corresponding sleeper displacement of 2 mm obeys a normal distribution. When the randomness of LRBB is considered, the amplitudes of rail expansion force, rail bending force, rail braking force and rail broken gap all follow normal distribution. As the standard deviations of the four indexes are small, which indicates the randomness of LRBB has little effect on track-bridge interaction. The distributions of the four indexes make it possible to design CWR on bridges with the limit state method.展开更多
Purpose–In this paper,a high-frequency radar test system was used to collect the data of clean ballast bed and fouled ballast bed of ballasted tracks,respectively,for a quantitative evaluation of the condition of rai...Purpose–In this paper,a high-frequency radar test system was used to collect the data of clean ballast bed and fouled ballast bed of ballasted tracks,respectively,for a quantitative evaluation of the condition of railway ballast bed.Design/methodology/approach–Based on original radar signals,the time–frequency characteristics of radar signals were analyzed,five ballast bed condition characteristic indexes were proposed,including the frequency domain integral area,scanning area,number of intersections with the time axis,number of timedomain inflection points and amplitude envelope obtained by Hilbert transform,and the effectiveness and sensitivity of the indexes were analyzed.Findings–The thickness of ballast bed tested at the sleep bottom by high-frequency radar is up to 55 cm,which meets the requirements of ballast bed detection.Compared with clean ballast bed,the values of the five indexes of fouled ballast bed are larger,and the five indexes could effectively show the condition of the ballast bed.The computational efficiency of amplitude envelope obtained by Hilbert transform is 140 s$km1,and the computational efficiency of other indexes is 5 s$km1.The amplitude envelopes obtained by Hilbert transform in the subgrade sections and tunnel sections are the most sensitive,followed by scanning area.The number of intersections with the time axis in the bridge sections was the most sensitive,followed by the scanning area.The scanning area can adapt to different substructures such as subgrade,bridges and tunnels,with high comprehensive sensitivity.Originality/value–The research can provide appropriate characteristic indexes from the high-frequency radar original signal to quantitatively evaluate ballast bed condition under different substructures.展开更多
文摘Purpose-The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to explore the effect of load amplitude,load frequency,presence of geogrid layer in ballast layer and ballast layer thickness on the behavior of track system.These variables are studied both experimentally and numerically.This paper examines the effect of geogrid reinforced ballast laying on a layer of clayey soil as a subgrade layer,where a half full scale railway tests are conducted as well as a theoretical analysis is performed.Design/methodologylapproach-The experimental tests work consists of laboratory model tests to investigate the reduction in the compressibility and stress distribution induced in soft clay under a ballast railway reinforced by geogrid reinforcement subjected to dynamic load.Experimental model based on an approximate half scale for general rail track engineering practice is adopted in this study which is used in Iraqi railways.The investigated parameters are load amplitude,load frequency and presence of geogrid reinforcement layer.A half fuli-scale railway was constructed for carrying out the tests,which consists of two rails 800 mm in iength with three w00den sleepers(900 mm×90 mm×90 mm).The ballast was overlying 500 mm thick clay layer.The tests were carried out with and without geogrid reinforcement,the tests were carried out in a well tied steel box of 1.5 m length X 1 m width X 1 m height.A series of laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid.Settlement in ballast and clay,was measured in reinforced and unreinforced ballast cases.In addition to the laboratory tests,the application of numerical analysis was made by using the finite element program PLAXIS 3D 2013.Findings-It was concluded that the settlement increased with increasing the simulated train load amplitude,there is a sharp increase in settlement up to the cycle 500 and after that,there is a gradual increase to level out between,2,500 and 4,500 cycles depending on the load frequency.There is a little increase in the induced settlement when the load amplitude increased from 0.5 to i ton,but it is higher when the load amplitude increased to 2 ton,the increase in settlement depends on the geogrid existence and the other studied parameters.Both experimental and numerical results showed the same behavior.The effect of load frequency on the settlement ratio is almost constant after 500 cycles.In general,for reinforced cases,the effect of load frequency on the settlement ratio is very small ranging between 0.5 and 2%compared with the unreinforcedcase.Originalitylvalue-Increasing the ballast layer thickness from 20 cm to 30 cm leads to decrease the settlement by about 50%.This ascertains the efficiency of ballast in spreading the waves induced by the track.
基金supported by the National Natural Science Foundation of China under Grants Nos.52165013 and 51565021.
文摘The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.
文摘The cross-level and twist irregularities are the most dangerous irregularity types that could cause wheel unloading with the risk of derailments and additional maintenance expenses.However,the mechanism of the irregularities initiation and development is unclear.The motivation of the present study was the previous experimental studies on the application of wide sleepers in the ballasted track.The long-term track geometry measurements with wide sleepers show an enormous reduction of the vertical longitudinal irregularities compared to the conventional track.However,wide sleepers had higher twist and cross-section level irregularities.The present paper aims to explain the phenomenon by discrete element method(DEM)modeling the development process of sleeper inhomogeneous support at cross-level depending on the sleeper form.The DEM simulations show that the maximal settlement intensity is up to 3.5 times lower for a wide sleeper in comparison with the conventional one.Nevertheless,the cross-level differential settlements are almost the same for both sleepers.The particle loading distribution after all loading cycles is concentrated on the smaller area,up to the half sleeper length,with fully unloaded zones under sleeper ends.Ballast flow limitation under the central part of the sleeper could improve the resilience of wide sleepers to the development of cross-level irregularities.The mechanism of initiation of the cross-level irregularity is proposed,which assumes the loss of sleeper support under sleeper ends.The further growth of inhomogeneous settlements along the sleeper is assumed as a result of the interaction of two processes:ballast flow due to dynamic impact during void closing and on the other side high pressure due to the concentration of the pressure under the middle part of the sleeper.The DEM simulation results support the assumption of the mechanism and agree with the experimental studies.
文摘This work aims to study the modeling and sizing of a floor reinforced by ballasted columns. We are studying the system of reinforcement by ballasted columns because this technique is able to replace deep foundations that are technically difficult to realize and their cost is higher. The modelling and dimensioning of foundations on a ballasted column will be an important contribution to the state of the art of this method because it will highlight the mode of transfer of loads, and will expose the induced deformations by also allowing to verification criteria of bearing capacity and allowable settlement according to geometric information of the model. The columns on a substrate located at 9 m have a length of 9 m and a diameter of 40 cm and were obtained by incorporating ballast of granular class 0/31.5 of internal friction angle of 38˚ and a density weight of 21 kN/m3. The choice of this method is based on the geotechnical characteristics of the initial soil. Thus, identification and characterization tests were carried out to estimate the bearing capacity and the settlement giving respectively 125 kPa and 57 cm. These results show the ground does not have sufficient mechanical properties to withstand the loads transmitted by the tank. By adopting the reinforcement of the soil with ballasted columns, numerical calculations show that after applying a load equal to 265.1 KPa, 20 cm vertical settlement and 17 cm horizontal displacement were obtained. This is in the tolerable deformation range for our tank, namely, less than 20 cm. Analytically, in addition to reducing settlement, ballasted columns, Due to their high stiffness, they have effectively contributed to the increase of the permissible soil stress up to 257 kPa.
基金This work was supported by the NSFS(Natural Science Foundation of Shanghai)Program under grant number 21ZR1465400.
文摘Cyclic load is widely adopted in laboratory to simulate the effect of train load on ballast bed.The effectiveness of such load equivalence is usually testified by having similar results of key concerns of ballast bed,such as deformation or stiffness,while the consistency of particle scale characteristics under two loading patterns is rarely examined,which is insufficient to well-understand and use the load simplification.In this study,a previous laboratory model test of ballast bed under cyclic load is rebuilt using 3D discrete element method(DEM),which is validated by dynamic responses monitored by high-resolution sensors.Then,train load having the same magnitude and amplitude as the cyclic load is applied in the numerical model to obtain the statistical characteristics of inter-particle contact force and particle movements in ballast bed.The results show that particle scale responses under two loading patterns could have quite deviation,even when macro-scale responses of ballast bed under two loading patterns are very close.This inconsistency indicates that the application scale of the DEM model should not exceed the validation scale.Moreover,it is important to examine multiscale responses to validate the effectiveness of load simplification.
基金The present work was supported by the National Natural Science Foundation of China(No.52008395).
文摘The unsupported sleeper can change the load characteristics of ballast particles and thus affect the dynamic stability of a ballasted bed.In this work,a laboratory test was constructed on a ballasted track containing unsupported sleepers.The ballasted track was excited by a wheelset,and the influence of unsupported sleepers on the dynamic stability of a ballasted bed was studied.The results show that the main frequency of the sleeper vibration appeared at 670 Hz,and the first-order rigid vibration mode at the frequency of 101 Hz had a significant effect on the condition without the unsupported sleeper.When the sleepers were continuously unsupported,the vibration damping effect of ballasted bed within the frequency range of 0–450 Hz was better than that at higher frequencies.Within the frequency range of 70–250 Hz,the vibration damping effect of the ballasted bed with unsupported sleepers was better than that without the unsupported sleeper.Owing to the excitation from the wheelset impact,the lateral resistance of the ballasted bed with unsupported sleepers whose hanging heights were 30,60,and 90 mm increased by 37.43%,12.25%,and 18.23%,respectively,while the lateral resistance of the ballasted bed without the unsupported sleeper remained basically unchanged.The unsupported sleeper could increase the difference in the quality of the ballasted bed between two adjacent sleepers.In addition,test results show that the hanging height of the unsupported sleeper had little effect on the lateral resistance of a ballasted bed without external excitation,but had an obvious effect on the rate of change of the lateral resistance of a ballasted bed and the acceleration amplitude of the sleeper vibration under the wheelset impact.
基金The financial supports from the National Natural Science Foundation of China(52008369,52125803,and 51988101)。
文摘As a core infrastructure of high-speed railways,ballast layers constituted by graded crushed stones feature noteworthy particle movement compared with normal railways,which may cause excessive settlement and have detrimental effects on train operation.However,the movement behavior remains ambiguous due to a lack of effective measurement approaches and analytical methods.In this study,an image-aided technique was developed in a full-scale model test using digital cameras and a colorbased identification approach.A total of 1274 surface ballast particles were manually dyed by discernible colors to serve as tracers in the test.The movements of the surface ballast particles were tracked using the varied pixels displaying tracers in the photos that were intermittently taken during the test in the perpendicular direction.The movement behavior of ballast particles under different combinations of train speeds and axle loads was quantitatively evaluated.The obtained results indicated that the surface ballast particle movements were slight,mainly concentrated near sleepers under low-speed train loads and greatly amplified and extended to the whole surface when the train speed reached 360 km.h-1.Additionally,the development of ballast particle displacement statistically resembled its rotation.Track vibration contributed to the movements of ballast particles,which specifically were driven by vertical acceleration near the track center and horizontal acceleration at the track edge.Furthermore,the development trends of ballast particle movements and track settlement under long-term train loading were similar,and both stabilized at nearly the same time.The track performance,including the vibration characteristics,accumulated settlement,and sleeper support stiffness,was determined to be closely related to the direction and distribution of ballast particle flow,which partly deteriorated under high-speed train loads.
基金sponsored by the National Natural Science Foundation of China(Grant No.52278467)China State Railway Group Co.Ltd.(P2022G013)+1 种基金China Academy of Railway Sciences Co.Ltd.(2022QT002)the Beijing-Shanghai High Speed Railway Co.Ltd.(2022-16).
文摘Foamed Polyurethane Solidified Ballasted Track(FPSBT),an innovative railway track,is formed by solidifying ballast bed with foamed polyurethane.Compared with the traditional Discrete Ballasted Track(DBT),FPSBT does not require regular maintenance such as tamping and cleaning.However,limited studies exist on the mechanical properties of FPSBT.In this study,Laboratory experiments are conducted on polyurethane samples to investigate the effects of polyurethane density on the mechanical properties of FPSBT.Furthermore,the performance of DBT and FPSBT with different polyurethane densities are compared,and the recommended polyurethane density is obtained.FPSBT exhibited negligible accumulation of deformation under cyclic loads,indicating excellent performance of FPSBT owing to the anti-deformation properties of polyurethane.Further,a track load vehicle test is conducted.FPSBT exhibited better load-transmitting ability than DBT.Finally,the construction and application of FPSBT in China are introduced.This study is expected to contribute to realizing a more extensive application of FPSBT.
文摘According to classical economic theory,external cost is the indirect,and uncompensated,social or environmental cost caused to an uninvolved third party that arises as an effect of another party’s activity.In light of this,the environmental cost caused by ballast water is considered as a negative externality.This paper aims to contribute by proposing that the environmental cost caused by ballast water can be determined through questionnaires,and that the imposition of a Pigouvian retributive tax is required to compensate for the environmental damage caused.The paper proceeds as follows.Firstly,ballast water management is discussed.Second,the environmental cost is discussed and it is asserted that it is important to have clear regulations and to update them frequently to prevent or minimize ballast water’s negative impact on the environment.Finally,it is suggested that the environmental cost caused by ballast water can be determined by questionnaires and,more specifically,by the WTP(Willingness to Pay)method,and that a special Pigouvian corrective taxation which can internalize this cost should be imposed.
文摘To get the influence of the randomness of longitudinal resistance of ballast bed (LRBB) on track-bridge interaction, the statistical law of LRBB was studied with existing test data and the Shapiro-Wilk test. Based on the principle of track-bridge interaction, a rail-sleeper-bridge-pier integrated simulation model that could consider the randomness of LRBB was established. Taking a continuous beam bridge for the heavy-haul railway as an example, the effect of the randomness of LRBB on the mechanical behavior of continuous welded rail (CWR) on bridges under typical conditions was carefully examined with a random sampling method and the simulation model. The results show that the LRBB corresponding sleeper displacement of 2 mm obeys a normal distribution. When the randomness of LRBB is considered, the amplitudes of rail expansion force, rail bending force, rail braking force and rail broken gap all follow normal distribution. As the standard deviations of the four indexes are small, which indicates the randomness of LRBB has little effect on track-bridge interaction. The distributions of the four indexes make it possible to design CWR on bridges with the limit state method.
基金funded by the National Key R&Dprogram of China[Grant No.2022YFB2603302]the Science and Technology Research and Development Program of China State Railway Group Co.,Ltd[Grant No.K2022G015]the Fund Project of China Academy of Railway Sciences Corporation Limited[Grant No.2022YJ305].
文摘Purpose–In this paper,a high-frequency radar test system was used to collect the data of clean ballast bed and fouled ballast bed of ballasted tracks,respectively,for a quantitative evaluation of the condition of railway ballast bed.Design/methodology/approach–Based on original radar signals,the time–frequency characteristics of radar signals were analyzed,five ballast bed condition characteristic indexes were proposed,including the frequency domain integral area,scanning area,number of intersections with the time axis,number of timedomain inflection points and amplitude envelope obtained by Hilbert transform,and the effectiveness and sensitivity of the indexes were analyzed.Findings–The thickness of ballast bed tested at the sleep bottom by high-frequency radar is up to 55 cm,which meets the requirements of ballast bed detection.Compared with clean ballast bed,the values of the five indexes of fouled ballast bed are larger,and the five indexes could effectively show the condition of the ballast bed.The computational efficiency of amplitude envelope obtained by Hilbert transform is 140 s$km1,and the computational efficiency of other indexes is 5 s$km1.The amplitude envelopes obtained by Hilbert transform in the subgrade sections and tunnel sections are the most sensitive,followed by scanning area.The number of intersections with the time axis in the bridge sections was the most sensitive,followed by the scanning area.The scanning area can adapt to different substructures such as subgrade,bridges and tunnels,with high comprehensive sensitivity.Originality/value–The research can provide appropriate characteristic indexes from the high-frequency radar original signal to quantitatively evaluate ballast bed condition under different substructures.