The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic ...The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic contact elements that are damaged randomly throughout the shearing process due to the natural heterogeneity.The evolution equation of damage variable is developed based on the Weibull function,which is able to cover a rather wide range of distribution shapes by only two parameters,making it applicable for varying scenarios.Accordingly,a statistical damage model is established by incorporating Mohr–Coulomb strength criterion,in which the interfacial residual strength is considered whereby the strain softening behavior can be described.A concept of“semi-softening”characteristic point on shear stress–displacement curve is proposed for effectively modeling the evolution of strain softening.Finally,a series of ring shear tests of the interfaces between fine sea sand and smooth/rough steel surfaces are conducted.The predicted results using the proposed model are compared with experimental data of this study as well as some results from existing literature,indicating that the model has a good performance in modeling the progressive failure and strain softening behavior for various types of soil–structure interfaces.展开更多
Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductanc...Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductance to survey soil water profiles and comparing it with root distribution surveyed by soil coring and root harvesting in Changbai Mountain in 1999. The results were: (1) The profiles of soil water content were adjusted by root activity. The water content of the soil layer with abundant roots was higher. (2) When CO 2 concentration was doubled, water transport was more active at the root/soil interface and the roots were distributed into deeper layer. It was shown in this work that the method of measuring electric conductance is an inexpensive, non_destructive and relatively sensitive way for underground water transport process.展开更多
The shear properties of ice-frozen soil interface are important when studying the constitutive model of frozen soil and slope stability in cold regions. In this research, a series of cryogenic direct shear tests for i...The shear properties of ice-frozen soil interface are important when studying the constitutive model of frozen soil and slope stability in cold regions. In this research, a series of cryogenic direct shear tests for ice-frozen clay soil interface were conducted. Based on experimental results, a nonlinear interface structural damage model is proposed to describe the shear properties of ice-frozen clay soil interface. Firstly, the cementation and friction structural properties of frozen soil materials were analyzed, and a structural parameter of the ice-frozen clay soil interface is proposed based on the cryogenic direct shear test results. Secondly, a structural coefficient ratio is proposed to describe the structural development degree of ice-frozen clay soil interface under load, which is able to normalize the shear stress of ice-frozen clay soil interface,and the normalized data can be described by the Duncan-Chang model. Finally, the tangent stiffness of ice-frozen clay soil interface is calculated, which can be applied to the mechanics analysis of frozen soil. Also, the shear stress of ice-frozen clay soil interface calculated by the proposed model is compared with test results.展开更多
Blasting has been widely used in mining and construction industries for rock breaking.This paper presents the results of a series of field tests conducted to investigate the ground wave propagation through mixed geolo...Blasting has been widely used in mining and construction industries for rock breaking.This paper presents the results of a series of field tests conducted to investigate the ground wave propagation through mixed geological media.The tests were conducted at a site in the northwestern part of Singapore composed of residual soil and granitic rock.The field test aims to provide measurement data to better understand the stress wave propagation in soil/rock and along their interface.Triaxial accelerometers were used for the free field vibration monitoring.The measured results are presented and discussed,and empirical formulae for predicting peak particle velocity (PPV) attenuation along the ground surface and in soil/rock were derived from the measured data.Also,the ground vibration attenuation across the soil-rock interface was carefully examined,and it was found that the PPV of ground vibration was decreased by 37.2% when it travels from rock to soil in the vertical direction.展开更多
Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the labo...Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the laboratory. The mechanical properties of the soil-root with branches interface is determined through the pullout-force and root-slippage curve (F-S curve). The results of investigating 24 Pinus tabulaeformis single roots and 55 P. tabulaeformis roots with branches demonstrated three kinds of pullout test failures: breakage failure on branching root, breakage failure on branching node, and pullout failure. The branch angle had a remarkable effect on the failure mode of the roots with branches: the maximum pullout force increased with the sum of the branch diameters and the branch angle. The peak slippage and the initial force had a positive correlation with the sum of the branch diameter. The sig- nificance test of correlation between branch angle and the initial force, however, showed they had no correlation. Branch angle and branch root diameter affect the anchorage properties between root system and soil. Therefore, it is important to investigate the anchorage mechanics of the roots with branches to understand the mechanism of root reinforcement and anchorage.展开更多
Toxicity-data of two carbamate insecticides, carbaryl and carbofuran, and three fungicides, ziram, zineb and mancozeb with rice-field N2-fixing cyanobacterium Cylindrospermum sp., obtained by in vitro growth and at so...Toxicity-data of two carbamate insecticides, carbaryl and carbofuran, and three fungicides, ziram, zineb and mancozeb with rice-field N2-fixing cyanobacterium Cylindrospermum sp., obtained by in vitro growth and at soil-water interface, were analyzed by the probit method. Growth enhancing concentration, no-observed effective concentration, minimum inhibitory concentration, the highest permissive concentration and lethal concentration100 (LCloo) were determined experimentally. The LC^o values of carbaryl, carbofuran, ziram, zineb and mancozeb in N2-fixing liquid medium were 56.2, 588.8, 0.07, 4.2 and 3.4 IJg/mL, respectively, whereas the corresponding LCloo values were 100.0, 1500.0, 0.17, 25.0 and 9.0 IJg/mL, respectively. The LC50 values of these pesticides in succession in N2-fixing agar medium were 44.7, 239.9, 0.07, 1.8 and 2.3 IJg/mL, respectively, whereas the corresponding LC100 values were 100.0, 600.0, 0.17, 10.0 and 7.0 IJg/mL, respectively. Similar results with nitrate supplemented liquid and agar media indicated that nitrate supplementation had toxicity reducing effect. The LCso and LC^oo values of toxicity in the N2-fixing liquid medium at soil-water interface were 91.2 and 200.0 IJg/mL for carbaryl, 2 317 and 6 000 pg/mL for carbofuran, 0.15 and 0.50 pg/mL for ziram, 16.4 and 50.0 pg/mL for zineb, and 7.2 and 25.0 pg/mL for mancozeb, respectively. Each LC^oo value at soil- water interface with a pesticide was significantly higher than its corresponding LCloo value at liquid/agar media. It can be concluded that, under the N2-fixing conditions, the cyanobacterium tolerated higher levels of each pesticide at soil-water interface.展开更多
Using newly developed dynamic shearing devices, the dynamic sheafing strength of frozen soil-conerete interface was studied experimentally. By placing concrete blocks in the lower half of the shear box and frozen soil...Using newly developed dynamic shearing devices, the dynamic sheafing strength of frozen soil-conerete interface was studied experimentally. By placing concrete blocks in the lower half of the shear box and frozen soil sample in the upper part, a series of dynamic shear tests on their interfaces were carried out. The obtained results are summarized and the main influencing factors are revealed.展开更多
-In order to analyze the stability of pipelines on the sea bed, the friction characteristics at the pipe-soil interface were examined by means of special direct shear tests. High density polythene was used as the surf...-In order to analyze the stability of pipelines on the sea bed, the friction characteristics at the pipe-soil interface were examined by means of special direct shear tests. High density polythene was used as the surface of the pipe, which is a widely-utilized material for the outer cover of the pipe to prevent sea water corrosion. Sands of different gradings were tested. The reconstituted soft clay taken from the Bohai area was consolidated to different degrees of consolidation by the vacuum preloading technique, and tested.展开更多
The characteristics of a disturbed soil-structure interface were studied based on the variation regularities of the disturbed soil within its mining subsidence area using direct shear tests.The effects of the initial ...The characteristics of a disturbed soil-structure interface were studied based on the variation regularities of the disturbed soil within its mining subsidence area using direct shear tests.The effects of the initial moisture content on the shear strength parameters of the soil-structure interfaces were analyzed.The results indicate that the cohesion of the interface initially increased and then decreased as the initial moisture content increased.In addition,the friction angle of the interface decreased as the initial moisture content increased.A constitutive model of the disturbed soil-structure interface,a rigid-plastic model based on the initial void ratio and saturability(VSRP) model,was established based on the results.In order to validate this model,a finite element analysis of DRS-1 direct shear tests was conducted.The finite element model calculations coincided with the results of the DRS-1 direct shear tests.The proposed model also reflected the nonlinear features of the soil-structure interface.展开更多
In order to explore the spatial variability of soil moisture near the interface of high/low stands, an experiment was conducted at Luancheng Experimental Station, Chinese Academy of Sciences, Hebei, China from May to ...In order to explore the spatial variability of soil moisture near the interface of high/low stands, an experiment was conducted at Luancheng Experimental Station, Chinese Academy of Sciences, Hebei, China from May to June, 1996. By analyzing the observed soil moisture data, it shows that there exists an obvious turning point of soil moisture pattern from one side of the interface to another. The effect of drier soil closer to the interface in winter wheat field is obvious, which is mainly due to the better ventilation condition near the interface in winter wheat filed than in alfalfa field. The irrigation in large scale is one of the most important factors to control the spatial pattern of soil moisture while the small scale human disturbing activity, such as the stealing event occurred during our observation, does not change the spatial pattern of soil moisture obviously. Latent heat, calculated by Bowen ratio method based on our observed micrometeorological data, is shown larger in alfalfa than that in winter wheat both at earring stage from May 8 to 10 and mature stage from June 11 to 14. This fact, together with the larger ground temperature and a little bit larger wind velocity in lower layer, explains that the soil is drier in alfalfa than in winter wheat from May 8 to 10. While for the period from June 11 to 14, irrigation's effect changes the natural interrelationship of soil moisture with meteorology and ground temperature.展开更多
The interface mechanical behavior of a monopile is an important component of the overall offshore wind turbine structure design.Understanding the soil-structure interaction,particularly the initial soil-structure stif...The interface mechanical behavior of a monopile is an important component of the overall offshore wind turbine structure design.Understanding the soil-structure interaction,particularly the initial soil-structure stiffness,has a significant impact on the study of natural frequency and dynamic response of the monopile.In this paper,a simplified method for estimating the interface mechanical behavior of monopiles under initial lateral loads is proposed.Depending on the principle of minimum potential energy and virtual work theory,the functions of soil reaction components at the interface of monopiles are derived;MATLAB programming has been used to simplify the functions of the initial stiffness by fitting a large number of examples;then the functions are validated against the field test data and FDM results.This method can modify the modulus of the subgrade reaction in the p-y curve method for the monopile-supported offshore wind turbine system.展开更多
基金financially supported by the China Postdoctoral Science Foundation(Grant No.2023M732997)the National Natural Science Foundation of China(Grant Nos.51890912,52008268)Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University(Grant No.2023007)。
文摘The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic contact elements that are damaged randomly throughout the shearing process due to the natural heterogeneity.The evolution equation of damage variable is developed based on the Weibull function,which is able to cover a rather wide range of distribution shapes by only two parameters,making it applicable for varying scenarios.Accordingly,a statistical damage model is established by incorporating Mohr–Coulomb strength criterion,in which the interfacial residual strength is considered whereby the strain softening behavior can be described.A concept of“semi-softening”characteristic point on shear stress–displacement curve is proposed for effectively modeling the evolution of strain softening.Finally,a series of ring shear tests of the interfaces between fine sea sand and smooth/rough steel surfaces are conducted.The predicted results using the proposed model are compared with experimental data of this study as well as some results from existing literature,indicating that the model has a good performance in modeling the progressive failure and strain softening behavior for various types of soil–structure interfaces.
文摘Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductance to survey soil water profiles and comparing it with root distribution surveyed by soil coring and root harvesting in Changbai Mountain in 1999. The results were: (1) The profiles of soil water content were adjusted by root activity. The water content of the soil layer with abundant roots was higher. (2) When CO 2 concentration was doubled, water transport was more active at the root/soil interface and the roots were distributed into deeper layer. It was shown in this work that the method of measuring electric conductance is an inexpensive, non_destructive and relatively sensitive way for underground water transport process.
基金supported the National Key Research and Development Program of China (Nos.2016YFE0202400, 2018YFC1505306)the National Natural Science Foundation of China (No.41971076)the State Key Laboratory of Road Engineering Safety and Health in Cold and High-altitude Regions (No.YGY2017KYPT-04)。
文摘The shear properties of ice-frozen soil interface are important when studying the constitutive model of frozen soil and slope stability in cold regions. In this research, a series of cryogenic direct shear tests for ice-frozen clay soil interface were conducted. Based on experimental results, a nonlinear interface structural damage model is proposed to describe the shear properties of ice-frozen clay soil interface. Firstly, the cementation and friction structural properties of frozen soil materials were analyzed, and a structural parameter of the ice-frozen clay soil interface is proposed based on the cryogenic direct shear test results. Secondly, a structural coefficient ratio is proposed to describe the structural development degree of ice-frozen clay soil interface under load, which is able to normalize the shear stress of ice-frozen clay soil interface,and the normalized data can be described by the Duncan-Chang model. Finally, the tangent stiffness of ice-frozen clay soil interface is calculated, which can be applied to the mechanics analysis of frozen soil. Also, the shear stress of ice-frozen clay soil interface calculated by the proposed model is compared with test results.
基金supported by the Land and Liveability National Innovation Challenge under L2 NIC Award No. L2NICCFP1-2013-1
文摘Blasting has been widely used in mining and construction industries for rock breaking.This paper presents the results of a series of field tests conducted to investigate the ground wave propagation through mixed geological media.The tests were conducted at a site in the northwestern part of Singapore composed of residual soil and granitic rock.The field test aims to provide measurement data to better understand the stress wave propagation in soil/rock and along their interface.Triaxial accelerometers were used for the free field vibration monitoring.The measured results are presented and discussed,and empirical formulae for predicting peak particle velocity (PPV) attenuation along the ground surface and in soil/rock were derived from the measured data.Also,the ground vibration attenuation across the soil-rock interface was carefully examined,and it was found that the PPV of ground vibration was decreased by 37.2% when it travels from rock to soil in the vertical direction.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.YX2010-20)the National Natural Science Foundation of China(No.31570708,No.30901162)the Open Projects Foundation of Key Laboratory of Soil and Water Conservation&Desertification Combat(Beijing Forestry University),Ministry of Education of China(No.201002)
文摘Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the laboratory. The mechanical properties of the soil-root with branches interface is determined through the pullout-force and root-slippage curve (F-S curve). The results of investigating 24 Pinus tabulaeformis single roots and 55 P. tabulaeformis roots with branches demonstrated three kinds of pullout test failures: breakage failure on branching root, breakage failure on branching node, and pullout failure. The branch angle had a remarkable effect on the failure mode of the roots with branches: the maximum pullout force increased with the sum of the branch diameters and the branch angle. The peak slippage and the initial force had a positive correlation with the sum of the branch diameter. The sig- nificance test of correlation between branch angle and the initial force, however, showed they had no correlation. Branch angle and branch root diameter affect the anchorage properties between root system and soil. Therefore, it is important to investigate the anchorage mechanics of the roots with branches to understand the mechanism of root reinforcement and anchorage.
基金supported by an ES project on ‘Cyanobacteria’ (Grant No.21 (0859)/11/EMR-II),from Council of Scientific and Industrial Research (CSIR),New Delhi,India
文摘Toxicity-data of two carbamate insecticides, carbaryl and carbofuran, and three fungicides, ziram, zineb and mancozeb with rice-field N2-fixing cyanobacterium Cylindrospermum sp., obtained by in vitro growth and at soil-water interface, were analyzed by the probit method. Growth enhancing concentration, no-observed effective concentration, minimum inhibitory concentration, the highest permissive concentration and lethal concentration100 (LCloo) were determined experimentally. The LC^o values of carbaryl, carbofuran, ziram, zineb and mancozeb in N2-fixing liquid medium were 56.2, 588.8, 0.07, 4.2 and 3.4 IJg/mL, respectively, whereas the corresponding LCloo values were 100.0, 1500.0, 0.17, 25.0 and 9.0 IJg/mL, respectively. The LC50 values of these pesticides in succession in N2-fixing agar medium were 44.7, 239.9, 0.07, 1.8 and 2.3 IJg/mL, respectively, whereas the corresponding LC100 values were 100.0, 600.0, 0.17, 10.0 and 7.0 IJg/mL, respectively. Similar results with nitrate supplemented liquid and agar media indicated that nitrate supplementation had toxicity reducing effect. The LCso and LC^oo values of toxicity in the N2-fixing liquid medium at soil-water interface were 91.2 and 200.0 IJg/mL for carbaryl, 2 317 and 6 000 pg/mL for carbofuran, 0.15 and 0.50 pg/mL for ziram, 16.4 and 50.0 pg/mL for zineb, and 7.2 and 25.0 pg/mL for mancozeb, respectively. Each LC^oo value at soil- water interface with a pesticide was significantly higher than its corresponding LCloo value at liquid/agar media. It can be concluded that, under the N2-fixing conditions, the cyanobacterium tolerated higher levels of each pesticide at soil-water interface.
基金supported by the National Natural Science Foundation of China (Grant No. 41171064)the National Basic Research Program of China (973 Program Grant No. 2012CB026104)
文摘Using newly developed dynamic shearing devices, the dynamic sheafing strength of frozen soil-conerete interface was studied experimentally. By placing concrete blocks in the lower half of the shear box and frozen soil sample in the upper part, a series of dynamic shear tests on their interfaces were carried out. The obtained results are summarized and the main influencing factors are revealed.
文摘-In order to analyze the stability of pipelines on the sea bed, the friction characteristics at the pipe-soil interface were examined by means of special direct shear tests. High density polythene was used as the surface of the pipe, which is a widely-utilized material for the outer cover of the pipe to prevent sea water corrosion. Sands of different gradings were tested. The reconstituted soft clay taken from the Bohai area was consolidated to different degrees of consolidation by the vacuum preloading technique, and tested.
基金Project(51274192)supported by National Natural Science Foundation of China
文摘The characteristics of a disturbed soil-structure interface were studied based on the variation regularities of the disturbed soil within its mining subsidence area using direct shear tests.The effects of the initial moisture content on the shear strength parameters of the soil-structure interfaces were analyzed.The results indicate that the cohesion of the interface initially increased and then decreased as the initial moisture content increased.In addition,the friction angle of the interface decreased as the initial moisture content increased.A constitutive model of the disturbed soil-structure interface,a rigid-plastic model based on the initial void ratio and saturability(VSRP) model,was established based on the results.In order to validate this model,a finite element analysis of DRS-1 direct shear tests was conducted.The finite element model calculations coincided with the results of the DRS-1 direct shear tests.The proposed model also reflected the nonlinear features of the soil-structure interface.
基金Projects supported by the National Natural Science Foundation of China (Nos. 49471016, 49771019 and 49890330)
文摘In order to explore the spatial variability of soil moisture near the interface of high/low stands, an experiment was conducted at Luancheng Experimental Station, Chinese Academy of Sciences, Hebei, China from May to June, 1996. By analyzing the observed soil moisture data, it shows that there exists an obvious turning point of soil moisture pattern from one side of the interface to another. The effect of drier soil closer to the interface in winter wheat field is obvious, which is mainly due to the better ventilation condition near the interface in winter wheat filed than in alfalfa field. The irrigation in large scale is one of the most important factors to control the spatial pattern of soil moisture while the small scale human disturbing activity, such as the stealing event occurred during our observation, does not change the spatial pattern of soil moisture obviously. Latent heat, calculated by Bowen ratio method based on our observed micrometeorological data, is shown larger in alfalfa than that in winter wheat both at earring stage from May 8 to 10 and mature stage from June 11 to 14. This fact, together with the larger ground temperature and a little bit larger wind velocity in lower layer, explains that the soil is drier in alfalfa than in winter wheat from May 8 to 10. While for the period from June 11 to 14, irrigation's effect changes the natural interrelationship of soil moisture with meteorology and ground temperature.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52201324,52078128,and52278355)the Natural Science Foundation of the Jiangsu Higher Education Institution of China(Grant No.22KJB560015)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX21_1794)。
文摘The interface mechanical behavior of a monopile is an important component of the overall offshore wind turbine structure design.Understanding the soil-structure interaction,particularly the initial soil-structure stiffness,has a significant impact on the study of natural frequency and dynamic response of the monopile.In this paper,a simplified method for estimating the interface mechanical behavior of monopiles under initial lateral loads is proposed.Depending on the principle of minimum potential energy and virtual work theory,the functions of soil reaction components at the interface of monopiles are derived;MATLAB programming has been used to simplify the functions of the initial stiffness by fitting a large number of examples;then the functions are validated against the field test data and FDM results.This method can modify the modulus of the subgrade reaction in the p-y curve method for the monopile-supported offshore wind turbine system.