Selecting bridging agents properly is a critical factor in designing non-damaging or low-damaging drill-in fluids. Historically, Abrams' rule has been used for this purpose. However, Abrams' rule only addresses the ...Selecting bridging agents properly is a critical factor in designing non-damaging or low-damaging drill-in fluids. Historically, Abrams' rule has been used for this purpose. However, Abrams' rule only addresses the size of particle required to initiate a bridge. The rule does not give an optimum size nor an ideal packing sequence for minimizing fluid invasion and optimizing sealing. This paper elaborates an ideal packing approach to solving the sealing problem by sealing pores with different sizes, especially those large pores which usually make dominant contribution to permeability and thereby effectively preventing the solids and filtrate of drill-in fluids from invading into formations, compared with the conventionally used techniques. Practical software has been developed to optimize the blending proportion of several bridging agents, so as to achieve ideal packing effectiveness. The method and its use in selecting the best blending proportion of several bridging agents are also discussed in this paper. A carefully designed drill-in fluid by using the ideal packing technique (named the IPT fluid) for offshore drilling operations at the Weizhou Oilfield, Nanhai West Company, CNOOC is presented. The near 100% return permeabilities from the dynamic damage tests using reservoir cores demonstrated the excellent bridging effect provided by this drill-in fluid.展开更多
To understand the influences of actual sampling conditions on cotton fiber length testing, this article presents a theoretic study on the distributions and fibrogram of the sample taken out by sampler from ideal slive...To understand the influences of actual sampling conditions on cotton fiber length testing, this article presents a theoretic study on the distributions and fibrogram of the sample taken out by sampler from ideal sliver at a certain angle. From the distributions expression it can be found that the size of the sampler and the sampling angle are important factors which affect sampling, but if the sampling width is narrow enough, the influence of the sampling angle on the distributions and fibrogram is small enough to be omitted. This is an important conclusion for sampling, in light of this, some suggestions for designing new type sampler are put forward.展开更多
The newly developed nonhydrostatic(NH)global spectral dynamical core is evaluated by using three-dimensional(3D)benchmark tests with/without moisture.This new dynamical core differs from the original Aladin-NH like on...The newly developed nonhydrostatic(NH)global spectral dynamical core is evaluated by using three-dimensional(3D)benchmark tests with/without moisture.This new dynamical core differs from the original Aladin-NH like one in the combined use of a dry-mass vertical coordinate and a new temperature variable,and thus,it inherently conserves the dry air mass and includes the mass sink effect associated with precipitation flux.Some 3D dry benchmark tests are first conducted,including steady state,dry baroclinic waves,mountain waves in non-sheared and sheared background flows,and a dry Held–Suarez test.The results from these test cases demonstrate that the present dynamical core is accurate and robust in applications on the sphere,especially for addressing the nonhydrostatic effects.Then,three additional moist test cases are conducted to further explore the improvement of the new dynamical core.Importantly,in contrast to the original Aladin-NH like one,the new dynamical core prefers to obtain simulated tropical cyclone with lower pressure,stronger wind speeds,and faster northward movement,which is much closer to the results from the Model for Prediction Across Scales(MPAS),and it also enhances the updrafts and provides enhanced precipitation rate in the tropics,which partially compensates the inefficient vertical transport due to the absence of the deep convection parameterization in the moist Held–Suarez test,thus demonstrating its potential value for full-physics global NH numerical weather prediction application.展开更多
基金supported by the National Natural Science Foundation(Project No.50574061)the Changjiang Scholars and Innovative Research Team(No.IRT0411),Ministry of Education
文摘Selecting bridging agents properly is a critical factor in designing non-damaging or low-damaging drill-in fluids. Historically, Abrams' rule has been used for this purpose. However, Abrams' rule only addresses the size of particle required to initiate a bridge. The rule does not give an optimum size nor an ideal packing sequence for minimizing fluid invasion and optimizing sealing. This paper elaborates an ideal packing approach to solving the sealing problem by sealing pores with different sizes, especially those large pores which usually make dominant contribution to permeability and thereby effectively preventing the solids and filtrate of drill-in fluids from invading into formations, compared with the conventionally used techniques. Practical software has been developed to optimize the blending proportion of several bridging agents, so as to achieve ideal packing effectiveness. The method and its use in selecting the best blending proportion of several bridging agents are also discussed in this paper. A carefully designed drill-in fluid by using the ideal packing technique (named the IPT fluid) for offshore drilling operations at the Weizhou Oilfield, Nanhai West Company, CNOOC is presented. The near 100% return permeabilities from the dynamic damage tests using reservoir cores demonstrated the excellent bridging effect provided by this drill-in fluid.
文摘To understand the influences of actual sampling conditions on cotton fiber length testing, this article presents a theoretic study on the distributions and fibrogram of the sample taken out by sampler from ideal sliver at a certain angle. From the distributions expression it can be found that the size of the sampler and the sampling angle are important factors which affect sampling, but if the sampling width is narrow enough, the influence of the sampling angle on the distributions and fibrogram is small enough to be omitted. This is an important conclusion for sampling, in light of this, some suggestions for designing new type sampler are put forward.
基金Supported by the National Natural Science Foundation of China(42275062,41875121,and 41975066).
文摘The newly developed nonhydrostatic(NH)global spectral dynamical core is evaluated by using three-dimensional(3D)benchmark tests with/without moisture.This new dynamical core differs from the original Aladin-NH like one in the combined use of a dry-mass vertical coordinate and a new temperature variable,and thus,it inherently conserves the dry air mass and includes the mass sink effect associated with precipitation flux.Some 3D dry benchmark tests are first conducted,including steady state,dry baroclinic waves,mountain waves in non-sheared and sheared background flows,and a dry Held–Suarez test.The results from these test cases demonstrate that the present dynamical core is accurate and robust in applications on the sphere,especially for addressing the nonhydrostatic effects.Then,three additional moist test cases are conducted to further explore the improvement of the new dynamical core.Importantly,in contrast to the original Aladin-NH like one,the new dynamical core prefers to obtain simulated tropical cyclone with lower pressure,stronger wind speeds,and faster northward movement,which is much closer to the results from the Model for Prediction Across Scales(MPAS),and it also enhances the updrafts and provides enhanced precipitation rate in the tropics,which partially compensates the inefficient vertical transport due to the absence of the deep convection parameterization in the moist Held–Suarez test,thus demonstrating its potential value for full-physics global NH numerical weather prediction application.