An ideal experiment is designed to determine the past of a particle in the nested Mach-Zehnder interferometer (MZI) by using standard quantum mechanics with quantum non-demolition measurements. We find that when the...An ideal experiment is designed to determine the past of a particle in the nested Mach-Zehnder interferometer (MZI) by using standard quantum mechanics with quantum non-demolition measurements. We find that when the photon reaches the detector, it only follows one arm of the outer interferometer and leaves no trace in the inner MZI. When it goes through the inner MZI, it cannot reach the detector. Our result obtained from the standard quantum mechanics contradicts the statement based on two-state vector formulism, 'the photon did not enter the (inner) interferometer, the photon never left the interferometer, but it was there'. Therefore, the statement and also the overlapping claim are incorrect.展开更多
We verify the accuracy of the curvature-based potential.By means of the idealized numerical experiment,we show that the curvature-based potential is in good agreement with the numerical experiment,and the errors are w...We verify the accuracy of the curvature-based potential.By means of the idealized numerical experiment,we show that the curvature-based potential is in good agreement with the numerical experiment,and the errors are within a reasonable range.Based on the curvature-based potential,the equipotential surfaces of particles are derived,and the intrinsic relations between the equipotential surfaces and Weingarten helicoids are shown.展开更多
基金Supported by the National Basic Research Program of China under Grant Nos 2011CB922203 and 2012CB921603the National Natural Science Foundation of China under Grant Nos 1174026 and U1330203
文摘An ideal experiment is designed to determine the past of a particle in the nested Mach-Zehnder interferometer (MZI) by using standard quantum mechanics with quantum non-demolition measurements. We find that when the photon reaches the detector, it only follows one arm of the outer interferometer and leaves no trace in the inner MZI. When it goes through the inner MZI, it cannot reach the detector. Our result obtained from the standard quantum mechanics contradicts the statement based on two-state vector formulism, 'the photon did not enter the (inner) interferometer, the photon never left the interferometer, but it was there'. Therefore, the statement and also the overlapping claim are incorrect.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072125 and 10872114)the Natural Science Foundation of Jiangsu Province (Grant No. SBK201140044)
文摘We verify the accuracy of the curvature-based potential.By means of the idealized numerical experiment,we show that the curvature-based potential is in good agreement with the numerical experiment,and the errors are within a reasonable range.Based on the curvature-based potential,the equipotential surfaces of particles are derived,and the intrinsic relations between the equipotential surfaces and Weingarten helicoids are shown.