近年来,波段选择在高光谱图像降维处理中得到了广泛地应用,然而常用的数据降维方法并没能将与人类视觉系统相关的信息进行有效利用,如果将人类与生俱来的视觉注意机制能力应用到高光谱图像中目标的视觉显著性特征的增强或识别,对于高光...近年来,波段选择在高光谱图像降维处理中得到了广泛地应用,然而常用的数据降维方法并没能将与人类视觉系统相关的信息进行有效利用,如果将人类与生俱来的视觉注意机制能力应用到高光谱图像中目标的视觉显著性特征的增强或识别,对于高光谱图像的目标检测研究无疑会产生相当的促进作用。研究提出引入视觉注意机制理论应用于波段选择研究,构建面向目标检测应用的视觉注意机制波段选择模型。通过分析计算波段图幅的目标与背景的可识别程度,量化所在波段对地物目标与背景的判别能力,提出了基于目标视觉可识别度的波段选择方法;利用LC显著性算法进行空间域的视觉显著性目标分析,计算背景与目标的显著性差异绝对值,提出基于LC显著目标结构分布的波段选择方法。将这两种方法结合提出的改进子空间划分方法,建立面向目标检测的视觉注意机制波段选择模型,并经高光谱遥感AVIRIS San Diego公开数据集进行目标检测实验验证,结果表明所提出的基于视觉注意机制的波段选择模型对于目标检测应用具有较好的检测效果,实现了数据降维和高效的计算处理。展开更多
为解决光线遮蔽、藻萍干扰以及稻叶尖形状相似等复杂环境导致稻田杂草识别效果不理想问题,该研究提出一种基于组合深度学习的杂草识别方法。引入MSRCP(multi-scale retinex with color preservation)对图像进行增强,以提高图像亮度及对...为解决光线遮蔽、藻萍干扰以及稻叶尖形状相似等复杂环境导致稻田杂草识别效果不理想问题,该研究提出一种基于组合深度学习的杂草识别方法。引入MSRCP(multi-scale retinex with color preservation)对图像进行增强,以提高图像亮度及对比度;加入ViT分类网络去除干扰背景,以提高模型在复杂环境下对小目标杂草的识别性能。在YOLOv7模型中主干特征提取网络替换为GhostNet网络,并引入CA注意力机制,以增强主干特征提取网络对杂草特征提取能力及简化模型参数计算量。消融试验表明:改进后的YOLOv7模型平均精度均值为88.2%,较原YOLOv7模型提高了3.3个百分点,参数量减少10.43 M,计算量减少66.54×109次/s。识别前先经过MSRCP图像增强后,与原模型相比,改进YOLOv7模型的平均精度均值提高了2.6个百分点,光线遮蔽、藻萍干扰以及稻叶尖形状相似的复杂环境下平均精度均值分别提高5.3、3.6、3.1个百分点,加入ViT分类网络后,较原模型平均精度均值整体提升了4.4个百分点,光线遮蔽、藻萍干扰一级稻叶尖形状相似的复杂环境下的平均精度均值较原模型整体提升了6.2、6.1、5.7个百分点。ViT-改进YOLOv7模型的平均精度均值为92.6%,相比于YOLOv5s、YOLOXs、MobilenetV3-YOLOv7、YOLOv8和改进YOLOv7分别提高了11.6、10.1、5.0、4.2、4.4个百分点。研究结果可为稻田复杂环境的杂草精准识别提供支撑。展开更多
文摘近年来,波段选择在高光谱图像降维处理中得到了广泛地应用,然而常用的数据降维方法并没能将与人类视觉系统相关的信息进行有效利用,如果将人类与生俱来的视觉注意机制能力应用到高光谱图像中目标的视觉显著性特征的增强或识别,对于高光谱图像的目标检测研究无疑会产生相当的促进作用。研究提出引入视觉注意机制理论应用于波段选择研究,构建面向目标检测应用的视觉注意机制波段选择模型。通过分析计算波段图幅的目标与背景的可识别程度,量化所在波段对地物目标与背景的判别能力,提出了基于目标视觉可识别度的波段选择方法;利用LC显著性算法进行空间域的视觉显著性目标分析,计算背景与目标的显著性差异绝对值,提出基于LC显著目标结构分布的波段选择方法。将这两种方法结合提出的改进子空间划分方法,建立面向目标检测的视觉注意机制波段选择模型,并经高光谱遥感AVIRIS San Diego公开数据集进行目标检测实验验证,结果表明所提出的基于视觉注意机制的波段选择模型对于目标检测应用具有较好的检测效果,实现了数据降维和高效的计算处理。
文摘为解决光线遮蔽、藻萍干扰以及稻叶尖形状相似等复杂环境导致稻田杂草识别效果不理想问题,该研究提出一种基于组合深度学习的杂草识别方法。引入MSRCP(multi-scale retinex with color preservation)对图像进行增强,以提高图像亮度及对比度;加入ViT分类网络去除干扰背景,以提高模型在复杂环境下对小目标杂草的识别性能。在YOLOv7模型中主干特征提取网络替换为GhostNet网络,并引入CA注意力机制,以增强主干特征提取网络对杂草特征提取能力及简化模型参数计算量。消融试验表明:改进后的YOLOv7模型平均精度均值为88.2%,较原YOLOv7模型提高了3.3个百分点,参数量减少10.43 M,计算量减少66.54×109次/s。识别前先经过MSRCP图像增强后,与原模型相比,改进YOLOv7模型的平均精度均值提高了2.6个百分点,光线遮蔽、藻萍干扰以及稻叶尖形状相似的复杂环境下平均精度均值分别提高5.3、3.6、3.1个百分点,加入ViT分类网络后,较原模型平均精度均值整体提升了4.4个百分点,光线遮蔽、藻萍干扰一级稻叶尖形状相似的复杂环境下的平均精度均值较原模型整体提升了6.2、6.1、5.7个百分点。ViT-改进YOLOv7模型的平均精度均值为92.6%,相比于YOLOv5s、YOLOXs、MobilenetV3-YOLOv7、YOLOv8和改进YOLOv7分别提高了11.6、10.1、5.0、4.2、4.4个百分点。研究结果可为稻田复杂环境的杂草精准识别提供支撑。