期刊文献+
共找到8,287篇文章
< 1 2 250 >
每页显示 20 50 100
Millet Origin Identification Model Based on Near-infrared Spectroscopy
1
作者 Penghe LYU Dongfeng YANG 《Agricultural Biotechnology》 2024年第3期31-33,共3页
[Objectives]This study was conducted to clarify the difference of millet from different producing areas in near-infrared spectroscopy(NIRS)modeling.[Methods]Millet samples from six different regions were collected for... [Objectives]This study was conducted to clarify the difference of millet from different producing areas in near-infrared spectroscopy(NIRS)modeling.[Methods]Millet samples from six different regions were collected for NIRS analysis,and an origin identification model based on BP neural network was established.The competitive adaptive reweighted sampling(CARS)algorithm was used to extract characteristic wavelength variables,and a CARS-BP model was established on this basis.Finally,the CARS-BP model was compared with support vector machine(SVM),partial least squares discriminant analysis(PLS)and KNN models.[Results]The characteristic wavelengths were extracted by CARS,and the number of variables was reduced from 1845 to 130.The discrimination accuracy of the CARS-BP model for the samples from six producing areas reached 98.1%,which was better than SVM,PSL and KNN models.[Conclusions]NIRS can quickly and accurately identify the origin of millet,providing a new method and way for the origin identification and quality evaluation of millet. 展开更多
关键词 MILLET identification of origin CARS-BP model NIR
下载PDF
Dynamics Modeling and Parameter Identification for a Coupled-Drive Dual-Arm Nursing Robot
2
作者 Hao Lu Zhiqiang Yang +2 位作者 Deliang Zhu Fei Deng Shijie Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期243-257,共15页
A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well... A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots. 展开更多
关键词 Nursing-care robot Coupled-drive joint Dynamic modeling Parameter identification
下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
3
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
下载PDF
Quantitative Identification of Delamination Damage in Composite Structure Based on Distributed Optical Fiber Sensors and Model Updating
4
作者 Hao Xu Jing Wang +3 位作者 Rubin Zhu Alfred Strauss Maosen Cao Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第6期785-803,共19页
Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan... Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures. 展开更多
关键词 Composite structures fiber optic sensor damage identification model updating surrogate model
下载PDF
Identification of Salmonella and Listeria monocytogenes by Near-infrared Spectroscopy and PCA 被引量:4
5
作者 Jiang Chuan Zhang Xiaohong +2 位作者 Zou Xiaolong Lu Guangying Liu Yangchun 《Meteorological and Environmental Research》 CAS 2019年第4期77-80,共4页
Near-infrared spectra of pathogenic bacteria (salmonella and Listeria monocytogenes ) were determined, and the spectral data were analyzed by the projection discriminant analysis based on principal component analysis ... Near-infrared spectra of pathogenic bacteria (salmonella and Listeria monocytogenes ) were determined, and the spectral data were analyzed by the projection discriminant analysis based on principal component analysis (PCA). The expected results were obtained. The results showed that salmonella and L. monocytogenes could be distinguished from each other by the near-infrared spectroscopy of the whole cells, cell walls or cytoplasm. 展开更多
关键词 near-infrared SPECTROSCOPY SALMONELLA LISTERIA MONOCYTOGENES PCA identification
下载PDF
Near-Infrared Spectroscopy Combined with Partial Least Squares Discriminant Analysis Applied to Identification of Liquor Brands 被引量:4
6
作者 Bin Yang Lijun Yao Tao Pan 《Engineering(科研)》 2017年第2期181-189,共9页
The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for t... The identification of liquor brands is very important for food safety. Most of the fake liquors are usually made into the products with the same flavor and alcohol content as regular brand, so the identification for the liquor brands with the same flavor and the same alcohol content is essential. However, it is also difficult because the components of such liquor samples are very similar. Near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was applied to identification of liquor brands with the same flavor and alcohol content. A total of 160 samples of Luzhou Laojiao liquor and 200 samples of non-Luzhou Laojiao liquor with the same flavor and alcohol content were used for identification. Samples of each type were randomly divided into the modeling and validation sets. The modeling samples were further divided into calibration and prediction sets using the Kennard-Stone algorithm to achieve uniformity and representativeness. In the modeling and validation processes based on PLS-DA method, the recognition rates of samples achieved 99.1% and 98.7%, respectively. The results show high prediction performance for the identification of liquor brands, and were obviously better than those obtained from the principal component linear discriminant analysis method. NIR spectroscopy combined with the PLS-DA method provides a quick and effective means of the discriminant analysis of liquor brands, and is also a promising tool for large-scale inspection of liquor food safety. 展开更多
关键词 identification of LIQUOR Brands near-infrared Spectroscopy Partial Least SQUARES DISCRIMINANT ANALYSIS Principal Component Linear DISCRIMINANT ANALYSIS
下载PDF
Rapid Identification for Drought Resistance of Wheat Using Near-infrared Diffuse Reflectance Spectroscopy 被引量:3
7
作者 冯伟森 吴少辉 +7 位作者 谷运红 张园 高海涛 王卫东 张灵帅 张学品 马飞 张灿军 《Agricultural Science & Technology》 CAS 2012年第12期2615-2619,共5页
[Objective] This study aimed to establish an identification system for drought-resistance in wheat by using near-infrared diffuse reflectance spectroscopy. [Method] In 2006-2007, 36 wheat varieties with different drou... [Objective] This study aimed to establish an identification system for drought-resistance in wheat by using near-infrared diffuse reflectance spectroscopy. [Method] In 2006-2007, 36 wheat varieties with different drought resistance were selected and were classified according to their drought resistance grades determined by the Technical Specification of Identification and Evaluation for Drought Resistance in Wheat (GB/T 21127-2007). In addition, the harvested wheat seed samples were spectrally analyzed with FOSS NIRSystems5000 near-infrared spectrum analyzer for grain quality (full spectrum analyzer) and then the forecasted regression equations were established. [Result] After the establishment of a database and validation, dis- criminated functions were obtained. The determination coefficient (RSQ) and coeffi- cients of determination for cross validation (1-VR) in the discriminant function built with seed samples from water stress area were 0.846 0 and 0.781 8, respectively, which indicated that the consistency between drought resistance and spectral charac- teristics in wheat varieties was good, and there was high correlation between the near-infrared diffuse reflectance spectra of seeds and the drought resistance in wheat. [Conclusiou] Under water stress condition, it is feasible to establish a conve- nient, rapid and no-damage identification system for the drought resistance in wheat by using the near-infrared diffuse reflectance spectrum technique to scan wheat seeds. 展开更多
关键词 near-infrared diffuse reflectance spectroscopy identification for wheat drought resistance Discriminant function
下载PDF
Visible and Near-Infrared Spectroscopic Discriminant Analysis Applied to Identification of Soy Sauce Adulteration 被引量:1
8
作者 Chunli Fu Jiemei Chen +1 位作者 Lifang Fang Tao Pan 《American Journal of Analytical Chemistry》 2022年第2期51-62,共12页
The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spe... The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spectroscopy combined with standard normal variate-partial least squares-discriminant analysis (SNV-PLS-DA) was used to establish the discriminant analysis models for adulterated and brewed soy sauces. Chubang soy sauce was selected as an identification brand (negative, 70). The adulteration samples (positive, 72) were prepared by mixing Chubang soy sauce and blended soy sauce with different adulteration rates. Among them, the “blended soy sauce” sample was concocted of salt water (NaCl), monosodium glutamate (C<sub>5</sub>H<sub>10</sub>NNaO<sub>5</sub>) and caramel color (C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>). The rigorous calibration-prediction-validation sample design was adopted. For the case of 1 mm, five waveband models (visible, short-NIR, long-NIR, whole NIR and whole scanning regions) were established respectively;in the case of 10 mm, three waveband models (visible, short-NIR and visible-short-NIR regions) for unsaturated absorption were also established respectively. In independent validation, the models of all wavebands in the cases of 1 mm and 10 mm have achieved good discrimination effects. For the case of 1 mm, the visible model achieved the optimal validation effect, the validation recognition-accuracy rate (RAR<sub>V</sub>) was 99.6%;while in the case of 10 mm, both the visible and visible-short-NIR models achieved the optimal validation effect (RAR<sub>V</sub> = 100%). The detection method does not require reagents and is fast and simple, which is easy to promote the application. The results can provide valuable reference for designing small dedicated spectrometers with different measurement modals and different spectral regions. 展开更多
关键词 Visible and near-infrared Spectroscopy Soy Sauce Adulteration identification Partial Least Squares-Discriminant Analysis Standard Normal Variate
下载PDF
Identification of constitutive model parameters for nickel aluminum bronze in machining 被引量:2
9
作者 付中涛 杨文玉 +2 位作者 曾思琪 郭步鹏 胡树兵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期1105-1111,共7页
The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to est... The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to establish the constitutive relation of NAB under high strain rate condition, a new methodology was proposed to accurately identify the constitutive parameters of Johnson?Cook model in machining, combining SHPB tests, predictive cutting force model and orthogonal cutting experiment. Firstly, SHPB tests were carried out to obtain the true stress?strain curves at various temperatures and strain rates. Then, an objective function of the predictive and experimental flow stresses was set up, which put the identified parameters of SHPB tests as the initial value, and utilized the PSO algorithm to identify the constitutive parameters of NAB in machining. Finally, the identified parameters were verified to be sufficiently accurate by comparing the values of cutting forces calculated from the predictive model and FEM simulation. 展开更多
关键词 nickel aluminum bronze constitutive parameter Johnson-Cook model identification method
下载PDF
COMBINATION OF DISTRIBUTED KALMAN FILTER AND BP NEURAL NETWORK FOR ESG BIAS MODEL IDENTIFICATION 被引量:3
10
作者 张克志 田蔚风 钱峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期226-231,共6页
By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets ... By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets of multi-measurements of the same ESG in different noise environments are "mapped" into a sensor network,and DKF with embedded consensus filters is then used to preprocess the data sets. After transforming the preprocessed results into the trained input and the desired output of neural network,BPNN with the learning rate and the momentum term is further utilized to identify the ESG bias. As demonstrated in the experiment,the proposed approach is effective for the model identification of the ESG bias. 展开更多
关键词 model identification distributed Kalman filter(DKF) back propagation neural network(BPNN) electrostatic suspended gyroscope(ESG)
下载PDF
Identification of Hammerstein Model Using Hybrid Neural Networks
11
作者 李世华 李奇 李捷 《Journal of Southeast University(English Edition)》 EI CAS 2001年第1期26-30,共5页
The identification problem of Hammerstein model with extension to the multi input multi output (MIMO) case is studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a mult... The identification problem of Hammerstein model with extension to the multi input multi output (MIMO) case is studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a multi layer feed forward neural network (MFNN) in cascade with a linear neural network (LNN). A unified back propagation (BP) algorithm is proposed to estimate the weights and the biases of the MFNN and the LNN simultaneously. Numerical examples are provided to show the efficiency of the proposed method. 展开更多
关键词 neural networks nonlinear systems identification Hammerstein model
下载PDF
Parameter identification and global sensitivity analysis of Xin'anjiang model using meta-modeling approach 被引量:13
12
作者 Xiao-meng SONG Fan-zhe KONG +2 位作者 Che-sheng ZHAN Ji-wei HAN Xin-hua ZHANG 《Water Science and Engineering》 EI CAS CSCD 2013年第1期1-17,共17页
Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity ana... Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model. 展开更多
关键词 Xin'anjiang model global sensitivity analysis parameter identification meta-modeling approach response surface model
下载PDF
Parameter identification of hysteretic model of rubber-bearing based on sequential nonlinear least-square estimation 被引量:10
13
作者 Yin Qiang Zhou Li Wang Xinming 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期375-383,共9页
In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinea... In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs. 展开更多
关键词 parameter identification rubber-bearing hysteretic behavior Bouc-Wen model sequential nonlinear least- square estimation
下载PDF
Error model identification of inertial navigation platform based on errors-in-variables model 被引量:6
14
作者 Liu Ming Liu Yu Su Baoku 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期388-393,共6页
Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression mo... Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method. 展开更多
关键词 errors-in-variables model total least squares method inertial navigation platform error model identification
下载PDF
The Identification and Modeling of the Volcanic Weathering Crust in the Yingcheng Formation of the Xujiaweizi Fault Depression, Songliao Basin 被引量:5
15
作者 LIU Cai CHI Huanzhao +1 位作者 SHAN Xuanlong HAO Guoli 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第4期1339-1351,共13页
Through the analysis of core descriptions, well-logs, seismic data, geochemical data and structural settings of the volcanic rock of the Yingcheng Formation in the Xujiaweizi fault depression, Songliao Basin, and the ... Through the analysis of core descriptions, well-logs, seismic data, geochemical data and structural settings of the volcanic rock of the Yingcheng Formation in the Xujiaweizi fault depression, Songliao Basin, and the geological section of the Yingcheng Formation in the southeast uplift area, this work determined the existence of volcanic weathering crust exists in the study area. The identification marks on the volcanic weathering crust can be recognized on the scale of core, logging, seismic, geochemistry, etc. In the study area, the structure of this crust is divided into clay layer, leached zone, fracture zone and host rocks, which are 5-118 m thick (averaging 27.5 m). The lithology of the weathering crust includes basalt, andesite, rhyolite and volcanic breccia, and the lithofacies are igneous effusive and extrusive facies. The volcanic weathering crusts are clustered together in the Dashen zone and the middle of the Xuzhong zone, whereas in the Shengshen zone and other parts of the Xuzhong zone, they have a relatively scattered distribution. It is a major volcanic reservoir bed, which covers an area of 2104.16 km2. According to the geotectonic setting of the Songliao Basin, the formation process of the weathering crust is complete. Combining the macroscopic and microscopic features of the weathering crust of the Yingcheng Formation in Xujiaweizi with the logging and three-dimensional seismic sections, we established a developmental model of the paleo uplift and a developmental model of the slope belt that coexists with the sag on the Xujiaweizi volcanic weathering crust. In addition, the relationship between the volcanic weathering crust and the formation and distribution of the oil/gas reservoir is discussed. 展开更多
关键词 Xujiaweizi fault depression Yingcheng Formation identification marks volcanic weathering crust developmental model
下载PDF
Identification of the Mechanical Joint Parameters with Model Uncertainty 被引量:3
16
作者 郭勤涛 张令弥 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第1期47-52,共6页
Joint parameter identification is a key problem in the modeling of complex structures. The behavior of joint may be random due to the random properties of preload and joint geometries, contact surface and its finish, ... Joint parameter identification is a key problem in the modeling of complex structures. The behavior of joint may be random due to the random properties of preload and joint geometries, contact surface and its finish, etc. A method is presented to simulate the joint parameters as probabilistic variables. In this method the response surface based model updating method and probabilistic approaches are employed to identify the parameters. The study implies that joint parameters of some structures have normal or nearly normal distributions, and a linear FE model with probabilistic variables could illustrate dynamic characteristics of joints. 展开更多
关键词 joint parameter identification model updating model uncertainty response surface
下载PDF
Comprehensive security risk factor identification for small reservoirs with heterogeneous data based on grey relational analysis model 被引量:6
17
作者 Jing-chun Feng Hua-ai Huang +1 位作者 Yao Yin Ke Zhang 《Water Science and Engineering》 EI CAS CSCD 2019年第4期330-338,共9页
Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when ... Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data. 展开更多
关键词 Security risk factor identification Heterogeneous data Grey relational analysis model Relational degree Information entropy Conditional entropy Small reservoir GUANGXI
下载PDF
Identification and nonlinear model predictive control of MIMO Hammerstein system with constraints 被引量:3
18
作者 李大字 贾元昕 +1 位作者 李全善 靳其兵 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期448-458,共11页
This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method ... This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method is introduced to MIMO Hammerstein system. A modified version of artificial bee colony algorithm is proposed to improve the prediction ability of Hammerstein model. Next, a computationally efficient nonlinear model predictive control algorithm(MGPC) is developed to deal with constrained problem of MIMO system. The identification process and performance of MGPC are shown. Numerical results about a polymerization reactor validate the effectiveness of the proposed method and the comparisons show that MGPC has a better performance than QDMC and basic GPC. 展开更多
关键词 model predictive control system identification constrained systems Hammerstein model polymerization reactor artificial bee colony algorithm
下载PDF
Recursive State-space Model Identification of Non-uniformly Sampled Systems Using Singular Value Decomposition 被引量:2
19
作者 王宏伟 刘涛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1268-1273,共6页
In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are co... In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method. 展开更多
关键词 Non-uniformly sampling system STATE-SPACE model identification SINGULAR value decomposition RECURSIVE algorithm
下载PDF
Modeling and identification of HAGC system of temper rolling mill 被引量:5
20
作者 贺尚红 钟掘 《Journal of Central South University of Technology》 EI 2005年第6期699-704,共6页
Including servo valve, hydraulic cylinder, mill and sensor and ignoring nonlinear factors, the linear dynamic model of hydraulic automatic gage control(HAGC) system of a temper rolling mill was theoretically derived. ... Including servo valve, hydraulic cylinder, mill and sensor and ignoring nonlinear factors, the linear dynamic model of hydraulic automatic gage control(HAGC) system of a temper rolling mill was theoretically derived. The order of the model is 4/4, and can be reduced to 2/2. Based on modulating functions method, utilizing numerical integration, we constructed the equivalent identification model of HAGC, and the least square estimation algorithm was established. The input and output data were acquired on line at temper rolling mill in Shangshai Baosteel Group Corporation, and the continuous time model of HAGC system was estimated with the proposed method. At different modulating window intervals, the estimated parameters changed remarkably. When the frequency bandwidth of modulating filter matches that of estimated system, the parameters can be estimated accurately. Finally, the dynamic model of the HAGC was obtained and validated based on the spectral analysis result. 展开更多
关键词 hydraulic automatic gage control modelING identification temper rolling mill
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部