In the traditional Intemet Protocol (IP) architecture, there is an overload of IP sermntic problems. Existing solutions focused mainly on the infrastructure for the fixed network, and there is a lack of support for ...In the traditional Intemet Protocol (IP) architecture, there is an overload of IP sermntic problems. Existing solutions focused mainly on the infrastructure for the fixed network, and there is a lack of support for Mobile Ad Hoc Networks (MANETs). To improve scalability, a routing protocol for MANETs is presented based on a locator named Tree-structure Locator Distance Vector (TLDV). The hard core of this routing method is the identifier/locator split by the Distributed Hash Table (DHT) method, which provides a scalable routing service. The node locator indicates its relative location in the network and should be updated whenever topology changes, kocator space ks organized as a tree-structure, and the basic routing operation of the TLDV protocol is presented. TLDV protocol is compared to some classical routing protocols for MANETs on the NS2 platform Results show that TLDV has better scalability. Key words:展开更多
Legacy IP address-based access control has met many challenges, because the network nodes cannot be identified accurately based on their variable IP addresses. “Locator/Identifier Split” has made it possible to buil...Legacy IP address-based access control has met many challenges, because the network nodes cannot be identified accurately based on their variable IP addresses. “Locator/Identifier Split” has made it possible to build a network access control mechanism based on the permanent identifier. With the support of “Locator/Identifier Split” routing and addressing concept, the Identifier-based Access Control (IBAC) makes net-work access control more accurate and efficient, and fits for mobile nodes’ access control quite well. Moreover, Self-verifying Identifier makes it possible for the receiver to verify the packet sender’s identity without the third part authentication, which greatly reduces the probability of “Identifier Spoofing”.展开更多
The locator/ID separation paradigm has been widely discussed to resolve the serious scalability issue that today's Internet is facing. Many researches have been carried on with this issue to alleviate the routing ...The locator/ID separation paradigm has been widely discussed to resolve the serious scalability issue that today's Internet is facing. Many researches have been carried on with this issue to alleviate the routing burden of the Default Free Zone (DFZ), improve the traffic engineering capabilities and support efficient mobility and multi-homing. However, in the locator/ID split networks, a third party is needed to store the identifier-to-locator pairs. How to map identifiers onto locators in a scalable and secure way is a really critical challenge. In this paper, we propose SS-MAP, a scalable and secure locator/ID mapping scheme for future Internet. First, SS-MAP uses a near-optimal DHT to map identifiers onto locators, which is able to achieve the maximal performance of the system with reasonable maintenance overhead relatively. Second, SS-MAP uses a decentralized admission control system to protect the DHT-based identifier-to-locator mapping from Sybil attacks, where a malicious mapping server creates numerous fake identities (called Sybil identifiers) to control a large fraction of the mapping system. This is the first work to discuss the Sybil attack problem in identifier-to-locator mapping mechanisms with the best knowledge of the authors. We evaluate the performance of the proposed approach in terms of scalability and security. The analysis and simulation results show that the scheme is scalable for large size networks and can resistant to Sybil attacks.展开更多
Current mobility management solutions based on ID/Locator separation are not easily deployed and cannot solve routing scalability and mobility problems. This paper proposes a novel network architecture based on ID/Loc...Current mobility management solutions based on ID/Locator separation are not easily deployed and cannot solve routing scalability and mobility problems. This paper proposes a novel network architecture based on ID/Locator separation and suggests a new mobility management solution. This solution solves the problem of scalability in the network and also provides better support for mobility. It can be easily deployed because no modification of the mobile host’s protocol stack is required. The identifier contains some routing information; so the solution provides intrinsic interworking with traditional mobile hosts. Because the mapping systems are distributed to the edge networks, robustness of the whole system is enhanced and handover delay is decreased.展开更多
Today's Internet architecture faces many challenges, from poor support for mobility to security threats. By analyzing the drawbacks of current TCP/IP protocol, we propose a new network architecture model LISNA. LISNA...Today's Internet architecture faces many challenges, from poor support for mobility to security threats. By analyzing the drawbacks of current TCP/IP protocol, we propose a new network architecture model LISNA. LISNA defines a kind of network architecture with mobility and trustworthiness, based upon the decoupling of end-host identity information from location information. This paper makes a brief description of the basic concepts and model structure that support network mobility and security. After introducing the key techniques in LISNA, the paper further illustrates how to promote the mobility handoff and to keep security association.展开更多
基金Acknowledgements This work was supported by the Hi-Tech Research and Development Program of China under Grant No.2007AA01Z407 the Co-Funding Project of Beijing Municipal education Commission under Grant No.JD100060630+3 种基金 National Foundation Research Project the National Natural Science Foundation Project under Grant No. 61170295 the Project of Aeronautical Science Foundation of China under Caant No.2011ZC51024 and the Fundamental Research Funds for the Central Universities.
文摘In the traditional Intemet Protocol (IP) architecture, there is an overload of IP sermntic problems. Existing solutions focused mainly on the infrastructure for the fixed network, and there is a lack of support for Mobile Ad Hoc Networks (MANETs). To improve scalability, a routing protocol for MANETs is presented based on a locator named Tree-structure Locator Distance Vector (TLDV). The hard core of this routing method is the identifier/locator split by the Distributed Hash Table (DHT) method, which provides a scalable routing service. The node locator indicates its relative location in the network and should be updated whenever topology changes, kocator space ks organized as a tree-structure, and the basic routing operation of the TLDV protocol is presented. TLDV protocol is compared to some classical routing protocols for MANETs on the NS2 platform Results show that TLDV has better scalability. Key words:
文摘Legacy IP address-based access control has met many challenges, because the network nodes cannot be identified accurately based on their variable IP addresses. “Locator/Identifier Split” has made it possible to build a network access control mechanism based on the permanent identifier. With the support of “Locator/Identifier Split” routing and addressing concept, the Identifier-based Access Control (IBAC) makes net-work access control more accurate and efficient, and fits for mobile nodes’ access control quite well. Moreover, Self-verifying Identifier makes it possible for the receiver to verify the packet sender’s identity without the third part authentication, which greatly reduces the probability of “Identifier Spoofing”.
基金supported in part by National Key Basic Research Program of China (973 program) under Grant No.2007CB307101,2007CB307106National Key Technology R&D Program under Grant No.2008BAH37B03+2 种基金Program of Introducing Talents of Discipline to Universities (111 Project) under Grant No. B08002National Natural Science Foundation of China under Grant No.60833002China Fundamental Research Funds for the Central Universities under Grant No.2009YJS016
文摘The locator/ID separation paradigm has been widely discussed to resolve the serious scalability issue that today's Internet is facing. Many researches have been carried on with this issue to alleviate the routing burden of the Default Free Zone (DFZ), improve the traffic engineering capabilities and support efficient mobility and multi-homing. However, in the locator/ID split networks, a third party is needed to store the identifier-to-locator pairs. How to map identifiers onto locators in a scalable and secure way is a really critical challenge. In this paper, we propose SS-MAP, a scalable and secure locator/ID mapping scheme for future Internet. First, SS-MAP uses a near-optimal DHT to map identifiers onto locators, which is able to achieve the maximal performance of the system with reasonable maintenance overhead relatively. Second, SS-MAP uses a decentralized admission control system to protect the DHT-based identifier-to-locator mapping from Sybil attacks, where a malicious mapping server creates numerous fake identities (called Sybil identifiers) to control a large fraction of the mapping system. This is the first work to discuss the Sybil attack problem in identifier-to-locator mapping mechanisms with the best knowledge of the authors. We evaluate the performance of the proposed approach in terms of scalability and security. The analysis and simulation results show that the scheme is scalable for large size networks and can resistant to Sybil attacks.
基金funded by the European Commission funded ICT-FP7 IP Project EFIPSANS under Grant No. INFSO-ICT-215549the National Basic Research Program of China ("973"Program) under Grant No. 2009CB320504
文摘Current mobility management solutions based on ID/Locator separation are not easily deployed and cannot solve routing scalability and mobility problems. This paper proposes a novel network architecture based on ID/Locator separation and suggests a new mobility management solution. This solution solves the problem of scalability in the network and also provides better support for mobility. It can be easily deployed because no modification of the mobile host’s protocol stack is required. The identifier contains some routing information; so the solution provides intrinsic interworking with traditional mobile hosts. Because the mapping systems are distributed to the edge networks, robustness of the whole system is enhanced and handover delay is decreased.
文摘Today's Internet architecture faces many challenges, from poor support for mobility to security threats. By analyzing the drawbacks of current TCP/IP protocol, we propose a new network architecture model LISNA. LISNA defines a kind of network architecture with mobility and trustworthiness, based upon the decoupling of end-host identity information from location information. This paper makes a brief description of the basic concepts and model structure that support network mobility and security. After introducing the key techniques in LISNA, the paper further illustrates how to promote the mobility handoff and to keep security association.