An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is stud...An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.展开更多
Non-thermal C/H/Ar plasmas are widely applied to carbonaceous material production and processing.In this work,plasma parameters and gaseous species of the atmospheric non-thermal C/H/Ar plasmas produced by an atmosphe...Non-thermal C/H/Ar plasmas are widely applied to carbonaceous material production and processing.In this work,plasma parameters and gaseous species of the atmospheric non-thermal C/H/Ar plasmas produced by an atmospheric-pressure DC arc discharge generator in CH_4/Ar were investigated.The voltage-current characteristics were measured for different CH_4/Ar ratios.Optical emission spectroscopy was employed to analyze the electron excitation temperature,gas temperature and electron density under various discharge conditions.The hydrocarbon molecules produced in the CH4/Ar plasmas were detected with photoionization mass spectrometry.The optical spectral results demonstrated that the electron excitation temperature was 0.4-1 eV,the gas temperature was 2800-4200 K and the electron density was in the range of(5-20)×10^15 cm^-3.The mass spectrum indicated that a variety of unsaturated hydrocarbons(C2H4,C3H6,C6H6,etc.) and several highly unsaturated hydrocarbons(C4H2,C5H6,etc.) were produced in the non-thermal arc plasmas.展开更多
The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the ...The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma.In this paper,a glass vacuum chamber and a pair of plate electrodes were designed and fabricated,using 13.56 MHz radio frequency(RF)discharge technology to ionize the working gas of Ar.This discharge was mathematically described with equivalent circuit model.The discharge voltage and current of the plasma were measured atdifferent pressures and different powers.Based on the capacitively coupled homogeneous discharge model,the equivalent circuit and the analytical formula were established.The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation.The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa,the average electron temperature is about 1.7–2.1 e V and the average electron density is about 0.5?×10^17–3.6?×10^17m^-3.Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.展开更多
A system is described in which a graphite furnace electrothermal vaporization device is employed for the introduction of microlitre liquid sample into an inductively coupled argon plasma. The technique provides a pico...A system is described in which a graphite furnace electrothermal vaporization device is employed for the introduction of microlitre liquid sample into an inductively coupled argon plasma. The technique provides a picogram detection limit and an adequate precision with a relative standard deviation of 4%. Mechanism of analyte condensation in transport process is explored. As an application, the technique combined with DDTC/CCl4 extraction is used to enrich and determine non- rare earth impurities in highly pure La2O3.展开更多
A Kalman filter was developed for correction of wing interference in ICP-AES.Modeling wing interference theoretically instead of experimentally, the filter can compensate the shift in wavelength position in scans, and...A Kalman filter was developed for correction of wing interference in ICP-AES.Modeling wing interference theoretically instead of experimentally, the filter can compensate the shift in wavelength position in scans, and therefore reduce the effect of the interference on detection limit.展开更多
An experimental setup was built up to carry out radio frequency (RF) inductively coupled plasma (ICP) and dielectric barrier discharge (DBD), and to depict the optical emission spectra (OES) of the discharges. OES fro...An experimental setup was built up to carry out radio frequency (RF) inductively coupled plasma (ICP) and dielectric barrier discharge (DBD), and to depict the optical emission spectra (OES) of the discharges. OES from argon ICP and DBD plasmas in visible and near ultraviolet region were measured. For argon ICP, the higher RF power input (higher than 500 W for our machine), the higher degree of argon plasma ionization. But that doesn't mean a higher mean electron energy. With the increase in the power input, the mean electron energy increases slightly, whereas the density of electron increases apparently On the contrary, argon DBD discharge behaves in the manner of a pulsed DC discharge on optical emission spectroscopy and V-I characteristics. DBD current is composed of a series of pulses equally spaced in temporal domain. The Kinetics of DBD emission strength is mainly governed by the frequency of the current pulse.展开更多
Inductively coupled plasma optical emission spectrometric approach(1CP-OES) is used to determine the potassium content as principal component in pyrotechnic compositions used for fireworks and firecrackers. Element ...Inductively coupled plasma optical emission spectrometric approach(1CP-OES) is used to determine the potassium content as principal component in pyrotechnic compositions used for fireworks and firecrackers. Element of potassium is conunonly found in potassium nitrate and potassium perchlorate in pyrotechnic compositions in fireworks and firecrackers. Statistical analysis shows that potassium nitrate content in pyrotechnics is between 10% to 60% and the potassium perchlorate content is between 20% to 70%,which counted in the content of potassium element is between 4% to 23%. Concept of this method: considering the weight of the sample is 400rag,constant volume is 1L and the concentration of potassium is between 10 mg/L to 90 mg/L in sample solution, the determination scope of the method for the potassium content would be between 1% to 23%.Further experiments proved that the fitting correlation coefficient of potassium calibration curve is 0.9997 or higher, recovery is 89.15%-100.23%.The allowable differential value is 0.4% between two single tests under repeatable conditions. This method can completely satisfy the requirements of the fireworks and firecrackers industry with high accuracy and good precision.展开更多
Inductively coupled plasma optical emission spectrometric approach(ICP-OES)is used to determine the magnesium and aluminum content as principal components in pyrotechnic compositions used for fireworks and firecrack...Inductively coupled plasma optical emission spectrometric approach(ICP-OES)is used to determine the magnesium and aluminum content as principal components in pyrotechnic compositions used for fireworks and firecrackers. Elements of magnesium and aluminum are commonly found in aluminum powder or magnesium-aluminum alloy powder in pyrotechnic compositions in fireworks and firecrackers. Statistical analysis shows that the magnesium content in pyrotechnics is between 8% to 30% and the aluminum content is between 8% to 35%(roughly).Concept of this method: suppose the weight of the sample is 400rag,constant volume is IL and the concentlation of magnesium and aluminum is between 12mg/L to 160mg/L in sample solution, the determination scope of the method for magnesium and aluminum content would be between 3% to 40%.Further experiments proved that the fitting correlation coefficient of the magnesium calibration curve is 0.9999 or higher, recovery is 101.01% -101.96%.The fitting correlation coefficient of the aluminum calibration curve is 0.9999 or higher, recovery is 99.36%-103.07%. The allowable differential value is 0.4% between two single tests under repeatable conditions. This method can completely satisfy the requirements of the fireworks and firecrackers industry with high accuracy and good precision.展开更多
The ion line of 434.8 nm and atom line of 419.8 nm of Ar plasma produced by an inductively coupled plasma (ICP) were measured by optical emission spectroscopy and the influences from the working gas pressure, radio-...The ion line of 434.8 nm and atom line of 419.8 nm of Ar plasma produced by an inductively coupled plasma (ICP) were measured by optical emission spectroscopy and the influences from the working gas pressure, radio-frequency (RF) power and different positions in the discharge chamber on the line intensities were investigated in this study. It was found that the intensity of Ar atom line increased firstly and then saturated with the increase of the pressure. The line intensity of Ar^+, on the other hand, reached a maximum value and then decreased along with the pressure. The intensity of the line in an RF discharge also demonstrated a jumping mode and a hysteresis phenomenon with the RF power. When the RF power increased to 400 W, the discharge jumped from the E-mode to the H-mode where the line intensity of Ar atom demonstrated a sudden increase, while the intensity of Ar^+ ion only changed slightly. If the RF power decreased from a high value, e.g., 1000 W, the discharge would jump from the H-mode back to the E-mode at a power of 300 W. At this time the intensities of Ar and Ar^+ lines would also decrease sharply. It was also noticed in this paper that the intensity of the ion line depended on the detective location in the chamber, namely at the bottom of the chamber the line was more intense than that in the middle of the chamber, but less intense than at the top, which is considered to be related to the capacitance coupling ability of the ICP plasma in different discharge areas.展开更多
The development of laser sampling for optical emission spectrometry is reviewed . Advantages and limitations of pulsed laser sampling are compared with those of continuous laser sampling . A novel method of laser samp...The development of laser sampling for optical emission spectrometry is reviewed . Advantages and limitations of pulsed laser sampling are compared with those of continuous laser sampling . A novel method of laser sampling of liquid samples for inductively coupled plasma -atomic emission spectrometry has been proposed , and its analytical performance investigated.Experimental results showed that,as a method of sample introduction , laser vaporization of liquid samples enjoyed certain advantages , e.g.,much higher sensitivity, much lower detection limit and reduced sample volume , over solution nebulization . A perspective of the application of laser sampling-inductively coupled plasma - actomic emission spectrometry for rock and mineral analysis is estimated as well.展开更多
Dry etching of 6H silicon carbide (6H-SiC) wafers in a C4Fs/Ar dual-frequency capacitively coupled plasma (DF-CCP) was investigated. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) wer...Dry etching of 6H silicon carbide (6H-SiC) wafers in a C4Fs/Ar dual-frequency capacitively coupled plasma (DF-CCP) was investigated. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to measure the SiC surface structure and compositions, respectively. Optical emission spectroscopy (OES) was used to measure the relative concentration of F radicals in the plasma. It was found that the roughness of the etched SiC surface and the etching rate are directly related to the power of low-frequency (LF) source. At lower LF power, a smaller surface roughness and a lower etching rate are obtained due to weak bombardment of low energy ions on the SiC wafers. At higher LF power the etching rate can be efficiently increased, but the surface roughness increases too. Compared with other plasma dry etching methods, the DF-CCP can effectively inhibit CχFγ films' deposition, and reduce surface residues.展开更多
Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are inves...Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are investigated by using a floating double electrical probe and optical emission spectroscopy (OES). It is shown that in the DF-CCPs, the electron temperature Te decreases with the increase in exciting frequency, while the onset of 2 MHz induces a sudden increase in Te and the electron density increases basically with the increase in low frequency (LF) power. The intensity of 750.4 nm emission line increases with the LF power in the case of 13.56/2 MHz, while different tendencies of line intensity with the LF power appear for other configurations. The reason for this is also discussed.展开更多
This paper proposes a simple collisional-radiative model to characterise capacitively coupled argon plasmas driven by conventional radio frequency in combination with optical emission spectroscopy and Langmuir probe m...This paper proposes a simple collisional-radiative model to characterise capacitively coupled argon plasmas driven by conventional radio frequency in combination with optical emission spectroscopy and Langmuir probe measurements. Two major processes are considered in this model, electron-impact excitation and the spontaneous radiative decay. The diffusion loss term, which is found to be important for the two metastable states (4s[3/2]2, 4s'[1/2]0), is also taken into account. Behaviours of representative metastable and radiative states are discussed. Two emission lines (located at 696.5 nm and 750.4 nm) are selected and intensities are measured to obtain populated densities of the corresponding radiative states in the argon plasma. The calculated results agree well with that measured by Langmuir probe, indicating that the current model combined with optical emission spectroscopy is a candidate tool for electron density and temperature measurement in radio frequency capacitively coupled discharges.展开更多
In this work,we investigated the discharge characteristics and heating mechanisms of argon helicon plasma in different wave coupled modes with and without blue core.Spatially resolved spectroscopy and emission intensi...In this work,we investigated the discharge characteristics and heating mechanisms of argon helicon plasma in different wave coupled modes with and without blue core.Spatially resolved spectroscopy and emission intensity of argon atom and ion lines were measured via local optical emission spectroscopy,and electron density was measured experimentally by an RFcompensated Langmuir probe.The relation between the emission intensity and the electron density was obtained and the wavenumbers of helicon and’Trivelpiece-Gould’(TG)waves were calculated by solving the dispersion relation in wave modes.The results show that at least two distinct wave coupled modes appear in argon helicon plasma at increasing RF power,i.e.blue core(or BC)mode with a significant bright core of blue lights and a normal wave(NW)mode without blue core.The emission intensity of atom line 750.5 nm(lArⅠ750.5nm)is related to the electron density and tends to be saturated in wave coupled modes due to the neutral depletion,while the intensity of ion line 480.6 nm(IArⅡ480.6nm)is a function of the electron density and temperature,and increases dramatically as the RF power is increased.Theoretical analysis shows that TG waves are strongly damped at the plasma edge in NW and/or BC modes,while helicon waves are the dominant mechanism of power deposition or central heating of electrons in both modes.The formation of BC column mainly depends on the enhanced central electron heating by helicon waves rather than TG waves since the excitation of TG waves would be suppressed in this special anti-resonance region.展开更多
基金The China Ocean Mineral Resources Research and Development Association Research Program of the State Oceanic Administration of China under contract No.DY125-13-R-07the National Natural Science Foundation of China under contract Nos 41322036 and 41230960+1 种基金the Shandong Provincial Natural Science Foundation of China under contract No.ZR2014DP009the Special Basic Research Funds for Central Public Research Institutes for The First Institute of Oceanography,State Oceanic Administration of China under contract Nos GY0213G06 and GY02-2012G35
文摘An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.
基金supported by National Natural Science Foundation of China(Nos.11035005,11475174,50876101)USTC-NSRL Association Funding(No.KY2090130001)
文摘Non-thermal C/H/Ar plasmas are widely applied to carbonaceous material production and processing.In this work,plasma parameters and gaseous species of the atmospheric non-thermal C/H/Ar plasmas produced by an atmospheric-pressure DC arc discharge generator in CH_4/Ar were investigated.The voltage-current characteristics were measured for different CH_4/Ar ratios.Optical emission spectroscopy was employed to analyze the electron excitation temperature,gas temperature and electron density under various discharge conditions.The hydrocarbon molecules produced in the CH4/Ar plasmas were detected with photoionization mass spectrometry.The optical spectral results demonstrated that the electron excitation temperature was 0.4-1 eV,the gas temperature was 2800-4200 K and the electron density was in the range of(5-20)×10^15 cm^-3.The mass spectrum indicated that a variety of unsaturated hydrocarbons(C2H4,C3H6,C6H6,etc.) and several highly unsaturated hydrocarbons(C4H2,C5H6,etc.) were produced in the non-thermal arc plasmas.
基金supported by National Natural Science Foundation of China(Grant No.61378037)the Fundamental Research Funds for the Central Universities(Nos.2013B33614,2017B15214)+1 种基金the Research Funds of Innovation and Entrepreneurship Education Reform for Chinese Universities(No.16CCJG01Z004)the Changzhou Science and Technology Program(No.CJ20160027)
文摘The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma.In this paper,a glass vacuum chamber and a pair of plate electrodes were designed and fabricated,using 13.56 MHz radio frequency(RF)discharge technology to ionize the working gas of Ar.This discharge was mathematically described with equivalent circuit model.The discharge voltage and current of the plasma were measured atdifferent pressures and different powers.Based on the capacitively coupled homogeneous discharge model,the equivalent circuit and the analytical formula were established.The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation.The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa,the average electron temperature is about 1.7–2.1 e V and the average electron density is about 0.5?×10^17–3.6?×10^17m^-3.Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.
文摘A system is described in which a graphite furnace electrothermal vaporization device is employed for the introduction of microlitre liquid sample into an inductively coupled argon plasma. The technique provides a picogram detection limit and an adequate precision with a relative standard deviation of 4%. Mechanism of analyte condensation in transport process is explored. As an application, the technique combined with DDTC/CCl4 extraction is used to enrich and determine non- rare earth impurities in highly pure La2O3.
文摘A Kalman filter was developed for correction of wing interference in ICP-AES.Modeling wing interference theoretically instead of experimentally, the filter can compensate the shift in wavelength position in scans, and therefore reduce the effect of the interference on detection limit.
基金This work is supported by the National Science Foundation of China No.19835030.
文摘An experimental setup was built up to carry out radio frequency (RF) inductively coupled plasma (ICP) and dielectric barrier discharge (DBD), and to depict the optical emission spectra (OES) of the discharges. OES from argon ICP and DBD plasmas in visible and near ultraviolet region were measured. For argon ICP, the higher RF power input (higher than 500 W for our machine), the higher degree of argon plasma ionization. But that doesn't mean a higher mean electron energy. With the increase in the power input, the mean electron energy increases slightly, whereas the density of electron increases apparently On the contrary, argon DBD discharge behaves in the manner of a pulsed DC discharge on optical emission spectroscopy and V-I characteristics. DBD current is composed of a series of pulses equally spaced in temporal domain. The Kinetics of DBD emission strength is mainly governed by the frequency of the current pulse.
文摘Inductively coupled plasma optical emission spectrometric approach(1CP-OES) is used to determine the potassium content as principal component in pyrotechnic compositions used for fireworks and firecrackers. Element of potassium is conunonly found in potassium nitrate and potassium perchlorate in pyrotechnic compositions in fireworks and firecrackers. Statistical analysis shows that potassium nitrate content in pyrotechnics is between 10% to 60% and the potassium perchlorate content is between 20% to 70%,which counted in the content of potassium element is between 4% to 23%. Concept of this method: considering the weight of the sample is 400rag,constant volume is 1L and the concentration of potassium is between 10 mg/L to 90 mg/L in sample solution, the determination scope of the method for the potassium content would be between 1% to 23%.Further experiments proved that the fitting correlation coefficient of potassium calibration curve is 0.9997 or higher, recovery is 89.15%-100.23%.The allowable differential value is 0.4% between two single tests under repeatable conditions. This method can completely satisfy the requirements of the fireworks and firecrackers industry with high accuracy and good precision.
文摘Inductively coupled plasma optical emission spectrometric approach(ICP-OES)is used to determine the magnesium and aluminum content as principal components in pyrotechnic compositions used for fireworks and firecrackers. Elements of magnesium and aluminum are commonly found in aluminum powder or magnesium-aluminum alloy powder in pyrotechnic compositions in fireworks and firecrackers. Statistical analysis shows that the magnesium content in pyrotechnics is between 8% to 30% and the aluminum content is between 8% to 35%(roughly).Concept of this method: suppose the weight of the sample is 400rag,constant volume is IL and the concentlation of magnesium and aluminum is between 12mg/L to 160mg/L in sample solution, the determination scope of the method for magnesium and aluminum content would be between 3% to 40%.Further experiments proved that the fitting correlation coefficient of the magnesium calibration curve is 0.9999 or higher, recovery is 101.01% -101.96%.The fitting correlation coefficient of the aluminum calibration curve is 0.9999 or higher, recovery is 99.36%-103.07%. The allowable differential value is 0.4% between two single tests under repeatable conditions. This method can completely satisfy the requirements of the fireworks and firecrackers industry with high accuracy and good precision.
基金supported by National Natural Science Foundation of China (Nos.50277003,10505005)
文摘The ion line of 434.8 nm and atom line of 419.8 nm of Ar plasma produced by an inductively coupled plasma (ICP) were measured by optical emission spectroscopy and the influences from the working gas pressure, radio-frequency (RF) power and different positions in the discharge chamber on the line intensities were investigated in this study. It was found that the intensity of Ar atom line increased firstly and then saturated with the increase of the pressure. The line intensity of Ar^+, on the other hand, reached a maximum value and then decreased along with the pressure. The intensity of the line in an RF discharge also demonstrated a jumping mode and a hysteresis phenomenon with the RF power. When the RF power increased to 400 W, the discharge jumped from the E-mode to the H-mode where the line intensity of Ar atom demonstrated a sudden increase, while the intensity of Ar^+ ion only changed slightly. If the RF power decreased from a high value, e.g., 1000 W, the discharge would jump from the H-mode back to the E-mode at a power of 300 W. At this time the intensities of Ar and Ar^+ lines would also decrease sharply. It was also noticed in this paper that the intensity of the ion line depended on the detective location in the chamber, namely at the bottom of the chamber the line was more intense than that in the middle of the chamber, but less intense than at the top, which is considered to be related to the capacitance coupling ability of the ICP plasma in different discharge areas.
文摘The development of laser sampling for optical emission spectrometry is reviewed . Advantages and limitations of pulsed laser sampling are compared with those of continuous laser sampling . A novel method of laser sampling of liquid samples for inductively coupled plasma -atomic emission spectrometry has been proposed , and its analytical performance investigated.Experimental results showed that,as a method of sample introduction , laser vaporization of liquid samples enjoyed certain advantages , e.g.,much higher sensitivity, much lower detection limit and reduced sample volume , over solution nebulization . A perspective of the application of laser sampling-inductively coupled plasma - actomic emission spectrometry for rock and mineral analysis is estimated as well.
基金supported by National Natural Science Foundation of China (Nos. 10975105, 11275136, 10975106, 11175126, 11204266 and 11075114) the National Magnetic Confinement Fusion Science Program of China (Nos. 2010GB106000, 2010GB106009), the Open Project of State Key Laboratory of Functional Materials for Information and Qing Lan Project, a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Program for graduates Research & Innovation in University of Jiangsu Province, China (No. CX10B-031Z)
文摘Dry etching of 6H silicon carbide (6H-SiC) wafers in a C4Fs/Ar dual-frequency capacitively coupled plasma (DF-CCP) was investigated. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to measure the SiC surface structure and compositions, respectively. Optical emission spectroscopy (OES) was used to measure the relative concentration of F radicals in the plasma. It was found that the roughness of the etched SiC surface and the etching rate are directly related to the power of low-frequency (LF) source. At lower LF power, a smaller surface roughness and a lower etching rate are obtained due to weak bombardment of low energy ions on the SiC wafers. At higher LF power the etching rate can be efficiently increased, but the surface roughness increases too. Compared with other plasma dry etching methods, the DF-CCP can effectively inhibit CχFγ films' deposition, and reduce surface residues.
基金supported by National Natural Science Foundation of China (Nos. 10635010, 10775103)
文摘Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are investigated by using a floating double electrical probe and optical emission spectroscopy (OES). It is shown that in the DF-CCPs, the electron temperature Te decreases with the increase in exciting frequency, while the onset of 2 MHz induces a sudden increase in Te and the electron density increases basically with the increase in low frequency (LF) power. The intensity of 750.4 nm emission line increases with the LF power in the case of 13.56/2 MHz, while different tendencies of line intensity with the LF power appear for other configurations. The reason for this is also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10635010 and 10775103)
文摘This paper proposes a simple collisional-radiative model to characterise capacitively coupled argon plasmas driven by conventional radio frequency in combination with optical emission spectroscopy and Langmuir probe measurements. Two major processes are considered in this model, electron-impact excitation and the spontaneous radiative decay. The diffusion loss term, which is found to be important for the two metastable states (4s[3/2]2, 4s'[1/2]0), is also taken into account. Behaviours of representative metastable and radiative states are discussed. Two emission lines (located at 696.5 nm and 750.4 nm) are selected and intensities are measured to obtain populated densities of the corresponding radiative states in the argon plasma. The calculated results agree well with that measured by Langmuir probe, indicating that the current model combined with optical emission spectroscopy is a candidate tool for electron density and temperature measurement in radio frequency capacitively coupled discharges.
基金National Natural Science Foundation of China(No.11975047)。
文摘In this work,we investigated the discharge characteristics and heating mechanisms of argon helicon plasma in different wave coupled modes with and without blue core.Spatially resolved spectroscopy and emission intensity of argon atom and ion lines were measured via local optical emission spectroscopy,and electron density was measured experimentally by an RFcompensated Langmuir probe.The relation between the emission intensity and the electron density was obtained and the wavenumbers of helicon and’Trivelpiece-Gould’(TG)waves were calculated by solving the dispersion relation in wave modes.The results show that at least two distinct wave coupled modes appear in argon helicon plasma at increasing RF power,i.e.blue core(or BC)mode with a significant bright core of blue lights and a normal wave(NW)mode without blue core.The emission intensity of atom line 750.5 nm(lArⅠ750.5nm)is related to the electron density and tends to be saturated in wave coupled modes due to the neutral depletion,while the intensity of ion line 480.6 nm(IArⅡ480.6nm)is a function of the electron density and temperature,and increases dramatically as the RF power is increased.Theoretical analysis shows that TG waves are strongly damped at the plasma edge in NW and/or BC modes,while helicon waves are the dominant mechanism of power deposition or central heating of electrons in both modes.The formation of BC column mainly depends on the enhanced central electron heating by helicon waves rather than TG waves since the excitation of TG waves would be suppressed in this special anti-resonance region.