-
题名微分方程带一般权的第二特征值的上界估计
被引量:23
- 1
-
-
作者
卢亦平
钱椿林
-
机构
苏州市职业大学基础部
-
出处
《长春大学学报》
2009年第10期7-9,20,共4页
-
基金
苏州市职业大学基金资助项目(SZD07W61)
-
文摘
考虑微分方程带一般权的第二特征值的上界估计。利用试验函数,Rayle igh定理,分部积分,Schwartz不等式和Young不等式等估计方法与技巧,获得了用第一特征值来估计第二特征值的上界的不等式,其估计系数与区间的度量无关。其结果在物理学和力学中有着广泛的应用,在微分方程的研究中起着重要的作用。
-
关键词
微分方程
一般权
特征值
特征函数
上界
估计
-
Keywords
differential equation
general weight
eigenvalue
eigenfunction
upper bound
estimate
-
分类号
O175.1
[理学—基础数学]
-
-
题名六阶常微分方程广义第二特征值的上界估计
被引量:4
- 2
-
-
作者
赵晓苏
钱椿林
-
机构
苏州市职业大学基础部
-
出处
《长春大学学报》
2009年第6期52-54,59,共4页
-
基金
苏州市职业大学基金资助项目(SZD07W61)
-
文摘
考虑六阶常微分方程广义第二特征值的上界估计。利用试验函数,Rayleigh定理,分部积分和Schwartz不等式等估计方法与技巧,获得了用第一特征值来估计第二特征值的上界的不等式,其估计系数与区间的度量无关。其结果在物理学和力学中有着广泛的应用,在常微分方程的研究中起着重要的作用。
-
关键词
六阶微分方程
特征值
特征函数
上界
估计
-
Keywords
differential equation with six orders
eigenvalue
eigenfunetion
upper bound
estimation
-
分类号
O175.1
[理学—基础数学]
-
-
题名高阶常微分方程特征值的上界估计
被引量:14
- 3
-
-
作者
吴平
钱椿林
-
机构
苏州广播电视大学
-
出处
《铁道师院学报》
2001年第3期3-9,共7页
-
文摘
考虑高阶常微分方程特征值的上界估计 ,利用试验函数、Rayleigh定理和不等式估计等方法 ,获得了用前n个特征值来估计第n + 1个特征值的上界的不等式 ,其估计系数与区间的几何度量无关 ,其结果在物理学和力学等领域中应用广泛。
-
关键词
高阶常微分方程
特征值
上界估计
试验函数
Rayleigh定理
不等式估计
-
Keywords
differential equation with higher orders
eigenvalue
upper bound
estimates
-
分类号
O175.1
[理学—基础数学]
O175.9
[理学—基础数学]
-
-
题名一类常微分方程特征值的上界估计
被引量:5
- 4
-
-
作者
吴平
-
机构
苏州职业大学基础部
-
出处
《宁波职业技术学院学报》
2009年第2期44-47,共4页
-
文摘
考虑一类常微分方程特征值的上界估计,利用分部积分、Rayleigh定理和不等式估计等方法,获得了用前n个特征值来估计第n+1个特征值的上界的不等式,其估计系数与区间的几何度量无关,其结果在物理学和力学等领域中应用广泛。
-
关键词
一类常微分方程
特征值
上界
估计
-
Keywords
a differential equation
eigenvalue
estimates
upper bound
-
分类号
O175.9
[理学—基础数学]
-
-
题名一类偏微分方程特征值的上界估计
被引量:3
- 5
-
-
作者
吴平
-
机构
苏州市职业大学基础部
-
出处
《宁波职业技术学院学报》
2010年第2期36-39,共4页
-
文摘
考虑一类偏微分方程特征值的上界估计,利用分部积分、Rayleigh定理和不等式估计等方法,获得了用前n个特征值来估计第n+1个特征值的上界的不等式,其估计系数与区域的度量无关,这个结果在力学和物理学中有着广泛的应用。
-
关键词
一类偏微分方程
特征值
上界
估计
-
Keywords
a partial differential equation
eigenvalue
estimates
upper bound
-
分类号
O175.9
[理学—基础数学]
-
-
题名任意阶微分方程第二广义特征值的上界估计
被引量:3
- 6
-
-
作者
陈静
钱椿林
-
机构
苏州市广播电视大学
-
出处
《江苏广播电视大学学报》
2006年第3期43-45,共3页
-
基金
苏州市职业大学基金资助项目(SZD06L28)
-
文摘
利用试验函数、分部积分、Rayle igh定理和不等式等方法与技巧,得到了用微分方程第一个特征值来估计第二个特征值的不等式。其不等式在物理学和力学中应用广泛,在微分方程的理论研究中起着重要的作用。
-
关键词
任意阶微分方程
特征值
特征函数
上界
估计
-
Keywords
differential equation with any order
eigenvalue
eigenfunction
upper bound
estimate
-
分类号
O175.1
[理学—基础数学]
-
-
题名一类高阶微分方程第二特征值的上界
被引量:2
- 7
-
-
作者
贾高
-
机构
蚌埠坦克学院
-
出处
《工科数学》
1997年第4期28-33,共6页
-
文摘
本文考虑形如(-1)tDt(p(x)Dty)=λ(-D2)ry,x∈(a,b),Dky(a)=Dky(b)=0,k=0,1,2,…,t-1{的第二特征值λ2的上界问题,得到了定理1和定理2,其中定理1的估计系数与[a,b]无关,定理2的结果在一定条件下比定理1的好.
-
关键词
上界
特征值
高阶微分方程
定理
系数
估计
条件
-
Keywords
ifferential equations, eigenvalues, upper bound.
-
分类号
O175
[理学—基础数学]
G633
[文化科学—教育学]
-
-
题名六阶常微分方程的特征值的上界估计
被引量:6
- 8
-
-
作者
黄振明
-
机构
苏州市广播电视大学
-
出处
《江苏广播电视大学学报》
2005年第3期68-70,73,共4页
-
文摘
考虑六阶常微分方程的特征值的上界估计,利用分部积分、Rayleigh定理和不等式估计等方法,获得了用前n个特征值来估计第n+1个特征值的上界的不等式,其估计系数与区间的几何度量无关,其结果在物理学和力学等领域中应用广泛。
-
关键词
六阶常微分方程
特征值
上界
估计
-
Keywords
differential equation with 6th order
eigenvalue upper bound
estimation
-
分类号
O175.1
[理学—基础数学]
-
-
题名一类高阶微分方程组的特征值上界
被引量:1
- 9
-
-
作者
汪名杰
朱宁
-
机构
蚌埠坦克学院
桂林电子工业学院
-
出处
《桂林电子工业学院学报》
1998年第2期77-80,共4页
-
文摘
利用一类高阶微分方程组前几个特征值来估计第n+1个特征值的上界,其估计不依赖于区间长度。
-
关键词
微分方程组
特征值
上界
-
Keywords
differential equations,eigenvalue,upper bound
-
分类号
O175.4
[理学—基础数学]
-
-
题名一类高阶常微分方程特征值的上界估计
- 10
-
-
作者
黄振明
-
机构
苏州广播电视大学电子工程系
-
出处
《苏州科技学院学报(自然科学版)》
CAS
2006年第1期30-34,44,共6页
-
文摘
运用常微分方程特征值的基本理论,考虑一类高阶方程特征值的上界估计,此类方程包含了常见的梁横向震动方程,有着重要的实际背景,利用分部积分、Rayleigh定理和不等式估计等方法,获得了用前n个特征值来估计第n+1个特征值的上界的不等式,其估计系数与区间的几何度量无关,其结果在物理学和力学等领域中应用广泛。
-
关键词
高阶常微分方程
特征值
上界
估计
-
Keywords
differential equation with higher order
eigenvalue
upper bound
estimates
-
分类号
O175.1
[理学—基础数学]
-
-
题名四阶微分方程广义第二特征值的上界估计
被引量:6
- 11
-
-
作者
胡志坚
钱椿林
-
机构
苏州市广播电视大学
-
出处
《江南大学学报(自然科学版)》
CAS
2005年第4期427-430,共4页
-
文摘
考虑四阶微分方程广义第二特征值的上界估计,利用试验函数、Rayleigh定理、分部积分、Schwartz不等式和Young不等式等估计方法与技巧,获得了用第一特征值来估计第二特征值上界的不等式,其估计系数与区间的度量无关.
-
关键词
四阶微分方程
特征值
特征函数
上界
估计
-
Keywords
differential equation with four orders
eigenvalue
eigenfunction
upper bound
estimate
-
分类号
O175.1
[理学—基础数学]
-
-
题名一类任意阶微分方程第二特征值的上界估计
- 12
-
-
作者
翟全礼
-
机构
唐山高等专科学校基础部
-
出处
《唐山学院学报》
2001年第4期11-16,共6页
-
文摘
考虑了一类任意阶微分方程第二特征值的上界估计 ,获得了用第一特征值来估计第二特征值的上界不等式 ,其估计系数与区间的度量无关 .此结果在物理学和力学中有着广泛的应用 。
-
关键词
微分方程
特征值
特征函数
上界估计
-
Keywords
differential equation with any order
eigenvalue
eigenfunction
upper bound estimate
-
分类号
O175.2
[理学—基础数学]
-
-
题名六阶某类微分方程第二特征值的上界
被引量:22
- 13
-
-
作者
韩秋敏
钱椿林
-
机构
苏州市轻工职工大学
苏州市职工大学
-
出处
《苏州大学学报(自然科学版)》
CAS
1999年第4期26-30,共5页
-
文摘
本文建立了问题(1.2)的用第一特征值来估计第二特征值的不等式,其估计系数与区间的几何度量无关,其结果在物理和力学中有着广泛的应用.
-
关键词
微分方程
特征值估计
上界
第二特征值
-
Keywords
differential equation, estimate of eigenvalue, upper bound
-
分类号
O175.9
[理学—基础数学]
O175.1
[理学—基础数学]
-
-
题名一类高阶微分方程第二特征值的上界(英文)
被引量:6
- 14
-
-
作者
贾高
-
机构
坦克学院数学教研室
-
出处
《数学研究》
CSCD
1999年第3期232-237,共6页
-
文摘
本文研究形如(1.1)的第二特征上界问题,得到了定理1 和定理2,其中定理1 的估计系数与[a,b]无关,定理2 的结果在一定条件下比定理1 好.
-
关键词
高阶微分方程
第二特征值
上界
微分算子
-
Keywords
Differential equations, eigenvalues, upper bound
-
分类号
O175
[理学—基础数学]
-
-
题名某类任意阶微分方程广义第二特征值的上界估计
- 15
-
-
作者
胡志坚
钱椿林
-
机构
苏州市职业大学远程教育学院
-
出处
《苏州市职业大学学报》
2006年第1期72-75,共4页
-
文摘
考虑了一类任意阶微分方程广义第二特征值的上界估计,获得了用第一特征值来估计第二特征值的上界的不等式,其估计系数与区间的度量无关.其结果在物理学和力学中有着广泛的应用,在微分方程的研究中起着重要的作用.
-
关键词
任意阶微分方程
特征值
特征函数
上界
估计
-
Keywords
differential equation with any order
eigenvalue
eigenfunction
upper bound
estimate
-
分类号
O175.1
[理学—基础数学]
-
-
题名高阶微分方程的特征值估计
- 16
-
-
作者
储一民
-
机构
常州广播电视大学
-
出处
《河海大学常州分校学报》
2000年第4期48-53,共6页
-
文摘
运用试验函数和Rayleigh定理[1] 得到了一个基本不等式 .证明了三个引理 .建立了用前n个特征值来估计第n +1个特征值的上界的不等式 ,其估计系数与区间的几何度量无关 。
-
关键词
高阶微分方程
特征值
特征函数
上界
试验函数
Rayleigh定理
不等式
估计系数
-
Keywords
differential equation
eigenvalue
eigenfunction
upper bound
-
分类号
O175.1
[理学—基础数学]
O175.9
[理学—基础数学]
-
-
题名某类微分方程组的特征值估计
- 17
-
-
作者
储一民
-
机构
常州广播电视大学
-
出处
《常州技术师范学院学报》
2000年第2期37-42,共6页
-
文摘
本文考虑某类微分方程组的特征值估计,获得了用前n个特征值来估计第n+1个特征值的上界的不等式,其估计系数与区间的几何度量无关,其结果在物理学和力学等领域中应用广泛。
-
关键词
微分方程组
特征值
特征向量函数
估计
-
Keywords
a certain system of differential equations
eigenvalue
eigenvector
upper bound
estimation
-
分类号
O241.81
[理学—计算数学]
-