The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of...The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.展开更多
Magnesium alloys have become more attractive because of their low density and electromagnetic shielding effectiveness in the aerospace industry.However,some unpredictable situation may lead to the ignition of magnesiu...Magnesium alloys have become more attractive because of their low density and electromagnetic shielding effectiveness in the aerospace industry.However,some unpredictable situation may lead to the ignition of magnesium alloys.In this review,the thermodynamic conditions and transfer processes of magnesium alloys ignition are analyzed from the point of mechanisms.The criteria of ignition are emphasized.In addition,ignitability and flammability test systems are compared.And a more suitable method to assess the potential ignition and flammability risks of magnesium alloys in extreme environments is recommended.Furthermore,the ignition characteristics of magnesium alloys are discussed in detail.It was found that the ignition of magnesium alloys is a complex process determined by internal properties such as thermo-physical properties,oxide film properties,chemical compositions and geometrical parameters,as well as the external environment such as gas species,oxygen concentration and oxygen pressure.Ignition temperature is not physical constants of materials.It is not simply assumed that ignition may occur when the temperature of Mg alloys reaches a certain ignition point.Finally,the unsolved issues in the ignition of magnesium alloys are pointed out and the future investigation are suggested for improving the safety and reliability of magnesium alloys in the aerospace applications.展开更多
A 500 N model engine filled with LO2/GCH4 was designed and manufactured.A series of ignition attempts were performed in it by both head spark plug and body spark plug.Results show that the engine can be ignited but th...A 500 N model engine filled with LO2/GCH4 was designed and manufactured.A series of ignition attempts were performed in it by both head spark plug and body spark plug.Results show that the engine can be ignited but the combustion cannot be sustained when head spark plug applied as the plug tip was set in the gaseous low-velocity zone with thin spray.This is mainly because flame from this zone cannot supply enough ignition energy for the whole chamber.However,reliable ignition and stable combustion can be achieved by body spark plug.As the O/F ratio increases from 2.61 to 3.49,chamber pressure increases from 0.474 to 0.925 MPa and combustion efficiency increases from 57.8%to 95.1%.This is determined by the injector configuration,which cannot produce the sufficiently breakup of the liquid oxygen on the low flow rate case.展开更多
Hydrazine is toxic and carcinogenic, which greatly increases the difficulty of application and no longer meets the needs of green aerospace. As a green propellant, the Ammonium Dinitramide(ADN)-based liquid propellant...Hydrazine is toxic and carcinogenic, which greatly increases the difficulty of application and no longer meets the needs of green aerospace. As a green propellant, the Ammonium Dinitramide(ADN)-based liquid propellant has the advantages of higher specific impulse, being non-toxic,pollution-free, and easy storage. However, an ADN-based space engine in orbit has exposed the problems of high-temperature deactivation of catalysts and cold-start failure. An active ignition technology—electric ignition technology was explored in this paper to break through the technical bottleneck of catalyst deactivation and the inability to a cold start. An experimental system of a constant-volume combustor for the ADN-based liquid propellant based on the electric ignition method was established. The electric ignition and combustion characteristics of the ADN-based liquid propellant in a volume combustor with an electric ignition method were studied. The influencing mechanisms of the ignition voltage and the electrode structure on the electric ignition characteristics of the ADN-based liquid propellant were investigated. An elevation of the ignition voltage could facilitate the ignition process of the ADN-based liquid propellant, curtail electric energy input and heating effect, while exerting an adverse impact on the combustion process of the propellant.An increase in the ignition voltage enhanced the ignition process of the propellant while simultaneously suppressing its combustion process when utilizing mesh electrodes. Compared to the strip electrodes, the mesh electrodes increased the contact area between the electrodes and the propellant,increased the electric energy input power in the electric ignition process, and reduced the ignition delay time. The mesh electrodes could promote the combustion process of the propellant to a certain extent.展开更多
To increase the thrust-weight ratio in next-generation military aeroengines,a new integrated afterburner was designed in this study.The integrated structure of a combined strut–cavity–injector was applied to the aft...To increase the thrust-weight ratio in next-generation military aeroengines,a new integrated afterburner was designed in this study.The integrated structure of a combined strut–cavity–injector was applied to the afterburner.To improve ignition characteristics in the afterburner,a new method using a plasma jet igniter was developed and optimized for application in the integrated afterburner.The effects of traditional spark igniters and plasma jet igniters on ignition processes and ignition characteristics of afterburners were studied and compared with the proposed design.The experimental results show that the strut–cavity–injector combination can achieve stable combustion,and plasma ignition can improve ignition characteristics.Compared with conventional spark ignition,plasma ignition reduced the ignition delay time by 67 ms.Additionally,the ignition delay time was reduced by increasing the inlet velocity and reducing the excess air coefficient.This investigation provides an effective and feasible method to apply plasma ignition in aeroengine afterburners and has potential engineering applications.展开更多
The arc ignition based on charring conductive polymers has advantages of simple structure,low ignition power consumption and restart capacity,which bringing it broadly application prospect in hybrid propulsion system ...The arc ignition based on charring conductive polymers has advantages of simple structure,low ignition power consumption and restart capacity,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.In order to optimize the performance of arc ignition system,it is essential to have a deeper understanding of the ignition processes and ignition characteristics of charring conductive polymers.In this paper,the thermal decomposition,electrical conductivity and thermal conductivity characteristics of charring conductive polymers with different conductive additives and matrix materials were comprehensively evaluated.An experimental investigation was conducted to determine the ignition behaviors and characteristics of different charring conductive polymers in a visual ignition combustor.The experiment result showed that the ignition delay and external energy required for ignition are negatively correlated with voltage and initial temperature of the ignition grain,but positively correlated with oxidizer flow velocity.Compared with charring conductive polymers containing multi-walled carbon nanotube,the ignition delay of charring conductive polymers with carbon black is significantly higher and the pyrolysis time is relatively longer.However,the ignition and initial flame propagation of charring conductive polymers with carbon black is more violent and more inclined to carbon particle ignition.Finally,the restart characteristic of different charring conductive polymers was studied.The ignition delay and external energy required for ignition of different charring conductive polymers all reduced with the increasing of the number of ignitions.However,the ignition characteristics would not change a lot after repeated ignition.展开更多
To improve the ignition behavior and to reduce the high NOx emissions of blended pulverized fuels(PF)of semicoke(SC),large-scale experiments were conducted in a 300 kW fired furnace at various nozzle settings,i.e.,rat...To improve the ignition behavior and to reduce the high NOx emissions of blended pulverized fuels(PF)of semicoke(SC),large-scale experiments were conducted in a 300 kW fired furnace at various nozzle settings,i.e.,ratios(denoted by hf/b)of the height of the rectangular burner nozzle to its width of 1.65,2.32,and 3.22.The combustion tests indicate that the flame stability,ignition performance,and fuel burnout ratio were significantly improved at a nozzle setting of hf/b=2.32.The smaller hf/b delayed ignition and caused the flame to concentrate excessively on the axis of the furnace,while the larger hf/b easily caused the deflection of the pulverized coal flame,and a high-temperature flame zone emerged close to the furnace wall.NOx emissions at the outlet of the primary zone decreased from 447 to 354 mg/m3(O2=6%),and the ignition distance decreased from 420 to 246 mm when the hf/b varied from 1.65 to 3.22.Furthermore,the ratio(denoted by SR/SC)of the strong reduction zone area to the combustion reaction zone area was defined experimentally by the CO concentration to evaluate the reduction zone.The SR/SC rose monotonously,but its restraining effects on NOx formation decreased as hf/b increased.The results suggested that in a test furnace,regulating the nozzle hf/b conditions sharply reduces NOx emissions and improves the combustion efficiency of SC blends possessing an appropriate jet rigidity.展开更多
The influence of the blending ratio of pyrolyzed semi-char(SC)on the ignition,NO emission and burnout characteristics of lignite co-fired with SC was investigated in a 350 kW fuel-rich/lean combustion furnace.The flam...The influence of the blending ratio of pyrolyzed semi-char(SC)on the ignition,NO emission and burnout characteristics of lignite co-fired with SC was investigated in a 350 kW fuel-rich/lean combustion furnace.The flame temperature and concentrations of gaseous species including O_(2),CO,and NO,were measured in detail.The results indicated that the ignition characteristics of the blended fuel worsened with increasing SC blending ratio,such as an elongated ignition standoff distance.The addition of SC to lignite delayed the appearance of a stable flame boundary,and the stable combustion zone moved down,but the final combustion stability was gradually strengthened in the later combustion stage.NO emission concentration at the primary combustion zone(PCZ)outlet was the lowest at 472.6 mg/m^(3)@6%O_(2)when the SC blending ratio was 25%.The combustion zone and reducing zone areas in PCZ were defined to evaluate the NO reduction characteristics,and quantitative analysis using a multiple linear regression model showed that heterogeneous reduction was more important than homogeneous reduction in lowering NO emissions.The Raman spectrum of the char sample indicated that the addition of lignite promoted the formation of small aromatic rings in the early ignition stage,corresponding to a higher char reactivity.The burnout ratio of pure lignite was maximal and was decreased by increasing the SC blending ratio.Synthetically,considering the ignition standoff distance,NO emission,and burnout ratio,the optimum SC blending ratio was estimated to be 25%.展开更多
Micro turbine engine (MTE) is an important kind of propulsion system for miniature unmanned aircraft or missiles, because of its better high-speed performance (than propeller propulsion) and higher propulsion effi...Micro turbine engine (MTE) is an important kind of propulsion system for miniature unmanned aircraft or missiles, because of its better high-speed performance (than propeller propulsion) and higher propulsion efficiency (obviously than rockets). Windmill start is a common air-starting mode used in micro turbine engine. The windmill starting characteristics are important to the practical use of micro turbine engine. In this paper, the windmill starting characteristics research for a 12 cm diameter (MTE-D) micro turbine engine is carried out by experiment and numerical simulation. The characteristic of rotor mechanical losses at low-speed condition is stud- ied, and the engine common working line of windmill starting process is obtained. Based on the engine windmill characteristics, the propane ignition characteristics under different inflow conditions are researched, and the envelope of propane ignition and propane flameout is determined. The experimental research of fuel supply and ignition characteristics is completed, and the envelope of fuel supply and ignition is obtained. The windmill stage, propane ignition stage, fuel ignition stage and acceleration process from idling-speed to 80% full speed of MTE-D micro turbine engine is optimized, and the optimization windmill starting parameters are collected. The successful wind-mill starting experiment under this condition with engine speed up to 80% full speed indicates that these starting parameters are reasonable. All the starting parameters of MTE-D micro turbine engine obtained in this work are dimensionless parameters, and the conclusions obtained in this study have some reference to other micro turbine engines with the similar structural form and starting process.展开更多
The effects of blend ratio on combustion and pollution emission characteristics for co-combustion of Shenmu pyrolyzed semi-char (SC), i.e., residuals of the coal pyrolysis chemical processing, and Shenhua bituminous c...The effects of blend ratio on combustion and pollution emission characteristics for co-combustion of Shenmu pyrolyzed semi-char (SC), i.e., residuals of the coal pyrolysis chemical processing, and Shenhua bituminous coal (SB) were investigated in a 0.35 MW pilot-scale pulverized coal-fired furnace. The gas temperature and concentrations of gaseous species (O2, CO, CO_(2), NO_(x) and HCN) were measured in the primary combustion zone at different blend ratios. It is found that the standoff distance of ignition changes monotonically from 132 to 384 mm with the increase in pyrolyzed semi-char blend ratio. The effects on the combustion characteristics may be neglected when the blend ratio is less than 30%. Above the 30% blend ratio, the increase in blend ratio postpones ignition in the primary stage and lowers the burnout rate. With the blend ratio increasing, NO_(x) emission at the furnace exit is smallest for the 30% blend ratio and highest for the 100% SC. The NO_(x) concentration was 425 mg/m^(3) at 6% O_(2) and char burnout was 76.23% for the 45% blend ratio. The above results indicate that the change of standoff distance and NO_(x) emission were not obvious when the blend ratio of semi-char is less than 45%, and carbon burnout changed a little at all blend ratios. The goal of this study is to achieve blending combustion with a large proportion of semi-char without great changes in combustion characteristics. So, an SC blend ratio of no more than 45% can be suitable for the burning of semi-char.展开更多
基金the Fundamental Research Funds for the Central Universities(Grant No.30920041102)National Natural Science Foundation of China(Grant No.11802134).
文摘The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.
基金This project is supported by Fundamental Research Funds for the Central Universities(Grant no.FRF-GF-18-024B).
文摘Magnesium alloys have become more attractive because of their low density and electromagnetic shielding effectiveness in the aerospace industry.However,some unpredictable situation may lead to the ignition of magnesium alloys.In this review,the thermodynamic conditions and transfer processes of magnesium alloys ignition are analyzed from the point of mechanisms.The criteria of ignition are emphasized.In addition,ignitability and flammability test systems are compared.And a more suitable method to assess the potential ignition and flammability risks of magnesium alloys in extreme environments is recommended.Furthermore,the ignition characteristics of magnesium alloys are discussed in detail.It was found that the ignition of magnesium alloys is a complex process determined by internal properties such as thermo-physical properties,oxide film properties,chemical compositions and geometrical parameters,as well as the external environment such as gas species,oxygen concentration and oxygen pressure.Ignition temperature is not physical constants of materials.It is not simply assumed that ignition may occur when the temperature of Mg alloys reaches a certain ignition point.Finally,the unsolved issues in the ignition of magnesium alloys are pointed out and the future investigation are suggested for improving the safety and reliability of magnesium alloys in the aerospace applications.
基金Project(613239)supported by the National Basic Research Program of China
文摘A 500 N model engine filled with LO2/GCH4 was designed and manufactured.A series of ignition attempts were performed in it by both head spark plug and body spark plug.Results show that the engine can be ignited but the combustion cannot be sustained when head spark plug applied as the plug tip was set in the gaseous low-velocity zone with thin spray.This is mainly because flame from this zone cannot supply enough ignition energy for the whole chamber.However,reliable ignition and stable combustion can be achieved by body spark plug.As the O/F ratio increases from 2.61 to 3.49,chamber pressure increases from 0.474 to 0.925 MPa and combustion efficiency increases from 57.8%to 95.1%.This is determined by the injector configuration,which cannot produce the sufficiently breakup of the liquid oxygen on the low flow rate case.
基金supported by the National Natural Science Foundation of China (No. 52176097)。
文摘Hydrazine is toxic and carcinogenic, which greatly increases the difficulty of application and no longer meets the needs of green aerospace. As a green propellant, the Ammonium Dinitramide(ADN)-based liquid propellant has the advantages of higher specific impulse, being non-toxic,pollution-free, and easy storage. However, an ADN-based space engine in orbit has exposed the problems of high-temperature deactivation of catalysts and cold-start failure. An active ignition technology—electric ignition technology was explored in this paper to break through the technical bottleneck of catalyst deactivation and the inability to a cold start. An experimental system of a constant-volume combustor for the ADN-based liquid propellant based on the electric ignition method was established. The electric ignition and combustion characteristics of the ADN-based liquid propellant in a volume combustor with an electric ignition method were studied. The influencing mechanisms of the ignition voltage and the electrode structure on the electric ignition characteristics of the ADN-based liquid propellant were investigated. An elevation of the ignition voltage could facilitate the ignition process of the ADN-based liquid propellant, curtail electric energy input and heating effect, while exerting an adverse impact on the combustion process of the propellant.An increase in the ignition voltage enhanced the ignition process of the propellant while simultaneously suppressing its combustion process when utilizing mesh electrodes. Compared to the strip electrodes, the mesh electrodes increased the contact area between the electrodes and the propellant,increased the electric energy input power in the electric ignition process, and reduced the ignition delay time. The mesh electrodes could promote the combustion process of the propellant to a certain extent.
基金supported by National Natural Science Foundation of China(Nos.51806245 and 51436008)the Science and Technology Projects of Shaanxi Province(No.2020JM-349)。
文摘To increase the thrust-weight ratio in next-generation military aeroengines,a new integrated afterburner was designed in this study.The integrated structure of a combined strut–cavity–injector was applied to the afterburner.To improve ignition characteristics in the afterburner,a new method using a plasma jet igniter was developed and optimized for application in the integrated afterburner.The effects of traditional spark igniters and plasma jet igniters on ignition processes and ignition characteristics of afterburners were studied and compared with the proposed design.The experimental results show that the strut–cavity–injector combination can achieve stable combustion,and plasma ignition can improve ignition characteristics.Compared with conventional spark ignition,plasma ignition reduced the ignition delay time by 67 ms.Additionally,the ignition delay time was reduced by increasing the inlet velocity and reducing the excess air coefficient.This investigation provides an effective and feasible method to apply plasma ignition in aeroengine afterburners and has potential engineering applications.
基金Supported by the Fundamental Research Funds for the Central Universities,China(No.30920041102)the National Natural Science Foundation of China(No.11802134).
文摘The arc ignition based on charring conductive polymers has advantages of simple structure,low ignition power consumption and restart capacity,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.In order to optimize the performance of arc ignition system,it is essential to have a deeper understanding of the ignition processes and ignition characteristics of charring conductive polymers.In this paper,the thermal decomposition,electrical conductivity and thermal conductivity characteristics of charring conductive polymers with different conductive additives and matrix materials were comprehensively evaluated.An experimental investigation was conducted to determine the ignition behaviors and characteristics of different charring conductive polymers in a visual ignition combustor.The experiment result showed that the ignition delay and external energy required for ignition are negatively correlated with voltage and initial temperature of the ignition grain,but positively correlated with oxidizer flow velocity.Compared with charring conductive polymers containing multi-walled carbon nanotube,the ignition delay of charring conductive polymers with carbon black is significantly higher and the pyrolysis time is relatively longer.However,the ignition and initial flame propagation of charring conductive polymers with carbon black is more violent and more inclined to carbon particle ignition.Finally,the restart characteristic of different charring conductive polymers was studied.The ignition delay and external energy required for ignition of different charring conductive polymers all reduced with the increasing of the number of ignitions.However,the ignition characteristics would not change a lot after repeated ignition.
基金This work was supported by the National Key Research and Development Program of China(No.2017YFB0602002)National Natural Science Foundation of China(Grant No.51536002).
文摘To improve the ignition behavior and to reduce the high NOx emissions of blended pulverized fuels(PF)of semicoke(SC),large-scale experiments were conducted in a 300 kW fired furnace at various nozzle settings,i.e.,ratios(denoted by hf/b)of the height of the rectangular burner nozzle to its width of 1.65,2.32,and 3.22.The combustion tests indicate that the flame stability,ignition performance,and fuel burnout ratio were significantly improved at a nozzle setting of hf/b=2.32.The smaller hf/b delayed ignition and caused the flame to concentrate excessively on the axis of the furnace,while the larger hf/b easily caused the deflection of the pulverized coal flame,and a high-temperature flame zone emerged close to the furnace wall.NOx emissions at the outlet of the primary zone decreased from 447 to 354 mg/m3(O2=6%),and the ignition distance decreased from 420 to 246 mm when the hf/b varied from 1.65 to 3.22.Furthermore,the ratio(denoted by SR/SC)of the strong reduction zone area to the combustion reaction zone area was defined experimentally by the CO concentration to evaluate the reduction zone.The SR/SC rose monotonously,but its restraining effects on NOx formation decreased as hf/b increased.The results suggested that in a test furnace,regulating the nozzle hf/b conditions sharply reduces NOx emissions and improves the combustion efficiency of SC blends possessing an appropriate jet rigidity.
基金National Key Research and Development Program of China(NO.2017YFB0602002)。
文摘The influence of the blending ratio of pyrolyzed semi-char(SC)on the ignition,NO emission and burnout characteristics of lignite co-fired with SC was investigated in a 350 kW fuel-rich/lean combustion furnace.The flame temperature and concentrations of gaseous species including O_(2),CO,and NO,were measured in detail.The results indicated that the ignition characteristics of the blended fuel worsened with increasing SC blending ratio,such as an elongated ignition standoff distance.The addition of SC to lignite delayed the appearance of a stable flame boundary,and the stable combustion zone moved down,but the final combustion stability was gradually strengthened in the later combustion stage.NO emission concentration at the primary combustion zone(PCZ)outlet was the lowest at 472.6 mg/m^(3)@6%O_(2)when the SC blending ratio was 25%.The combustion zone and reducing zone areas in PCZ were defined to evaluate the NO reduction characteristics,and quantitative analysis using a multiple linear regression model showed that heterogeneous reduction was more important than homogeneous reduction in lowering NO emissions.The Raman spectrum of the char sample indicated that the addition of lignite promoted the formation of small aromatic rings in the early ignition stage,corresponding to a higher char reactivity.The burnout ratio of pure lignite was maximal and was decreased by increasing the SC blending ratio.Synthetically,considering the ignition standoff distance,NO emission,and burnout ratio,the optimum SC blending ratio was estimated to be 25%.
文摘Micro turbine engine (MTE) is an important kind of propulsion system for miniature unmanned aircraft or missiles, because of its better high-speed performance (than propeller propulsion) and higher propulsion efficiency (obviously than rockets). Windmill start is a common air-starting mode used in micro turbine engine. The windmill starting characteristics are important to the practical use of micro turbine engine. In this paper, the windmill starting characteristics research for a 12 cm diameter (MTE-D) micro turbine engine is carried out by experiment and numerical simulation. The characteristic of rotor mechanical losses at low-speed condition is stud- ied, and the engine common working line of windmill starting process is obtained. Based on the engine windmill characteristics, the propane ignition characteristics under different inflow conditions are researched, and the envelope of propane ignition and propane flameout is determined. The experimental research of fuel supply and ignition characteristics is completed, and the envelope of fuel supply and ignition is obtained. The windmill stage, propane ignition stage, fuel ignition stage and acceleration process from idling-speed to 80% full speed of MTE-D micro turbine engine is optimized, and the optimization windmill starting parameters are collected. The successful wind-mill starting experiment under this condition with engine speed up to 80% full speed indicates that these starting parameters are reasonable. All the starting parameters of MTE-D micro turbine engine obtained in this work are dimensionless parameters, and the conclusions obtained in this study have some reference to other micro turbine engines with the similar structural form and starting process.
基金This work was supported by the National Key R&D Program of China(No.2017YFB0602002).
文摘The effects of blend ratio on combustion and pollution emission characteristics for co-combustion of Shenmu pyrolyzed semi-char (SC), i.e., residuals of the coal pyrolysis chemical processing, and Shenhua bituminous coal (SB) were investigated in a 0.35 MW pilot-scale pulverized coal-fired furnace. The gas temperature and concentrations of gaseous species (O2, CO, CO_(2), NO_(x) and HCN) were measured in the primary combustion zone at different blend ratios. It is found that the standoff distance of ignition changes monotonically from 132 to 384 mm with the increase in pyrolyzed semi-char blend ratio. The effects on the combustion characteristics may be neglected when the blend ratio is less than 30%. Above the 30% blend ratio, the increase in blend ratio postpones ignition in the primary stage and lowers the burnout rate. With the blend ratio increasing, NO_(x) emission at the furnace exit is smallest for the 30% blend ratio and highest for the 100% SC. The NO_(x) concentration was 425 mg/m^(3) at 6% O_(2) and char burnout was 76.23% for the 45% blend ratio. The above results indicate that the change of standoff distance and NO_(x) emission were not obvious when the blend ratio of semi-char is less than 45%, and carbon burnout changed a little at all blend ratios. The goal of this study is to achieve blending combustion with a large proportion of semi-char without great changes in combustion characteristics. So, an SC blend ratio of no more than 45% can be suitable for the burning of semi-char.