In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] a...In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.展开更多
It is well known that the problem on the stability of the solutions for Fredholm integral equation of the first kind is an ill-posed problem in C[a, b] or L2 [a, b]. In this paper, the representation of the solution f...It is well known that the problem on the stability of the solutions for Fredholm integral equation of the first kind is an ill-posed problem in C[a, b] or L2 [a, b]. In this paper, the representation of the solution for Fredholm integral equation of the first kind is given if it has a unique solution. The stability of the solution is proved in the reproducing kernel space, namely, the measurement errors of the experimental data cannot result in unbounded errors of the true solution. The computation of approximate solution is also stable with respect to ||· ||c or ||L2· A numerical experiment shows that the method given in this paper is stable in the reproducing kernel space.展开更多
The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was c...The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was chosen. This can be used in further development of the theory of the integral equations in non-standard problems, classes in the numerical solution of third kind Volterra-Stieltjes integral equations, and when solving specific problems that lead to equations of the third kind.展开更多
The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate reg...The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given.展开更多
Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be a...Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be applied to estimating surplus eigenvalues of the Fredholm integral equation of the second kind when its partial eigenvalues have been known, and at the same time, it can be applied to solving the approximating solution of the given equation.展开更多
The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By a...The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By applying Abel transformation the dual integral equations are reduced to Fredholm integral equation of the second kind which is solved numerically.展开更多
In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the...In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.展开更多
In recent papers, Babolian & Delves [2] and Belward[3] described a Chebyshev series method for the solution of first kind integral equations. The expansion coefficients of the solution are determined as the soluti...In recent papers, Babolian & Delves [2] and Belward[3] described a Chebyshev series method for the solution of first kind integral equations. The expansion coefficients of the solution are determined as the solution of a mathematical programming problem.The method involves two regularization parameters, Cf and r, but values assigned to these parameters are heuristic in nature. Essah & Delves[7] described an algorithm for setting these parameters automatically, but it has some difficulties. In this paper we describe three iterative algorithms for computing these parameters for singular and non-singular first kind integral equations. We give also error estimates which are cheap to compute. Finally, we give a number of numerical examples showing that these algorithms work well in practice.展开更多
In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space whic...In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.展开更多
1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution...1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution (v) does not depend continuously on the data (g). In order to treat the ill-posedness and develop the numerical method, one reformulates the problem as a Volterra integral equation of the first kind wish a convolution type kernel (see Sneddon [1], Carslaw and Jaeger [2])展开更多
Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations ...Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations solutions of the third kind were considered. Volterra integral equations of the first and third kind with smooth kernels were studied, and proof of the existence of a multiparameter family of solutions is described. Additionally, linear Fredholm integral equations of the first kind were investigated, for which Lavrent’ev regularizing operators were constructed.展开更多
In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergen...In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergence analyses are presented in an abstract framework.展开更多
We introduce multilevel augmentation methods for solving operator equations based on direct sum decompositions of the range space of the operator and the solution space of the operator equation and a matrix splitting ...We introduce multilevel augmentation methods for solving operator equations based on direct sum decompositions of the range space of the operator and the solution space of the operator equation and a matrix splitting scheme. We establish a general setting for the analysis of these methods, showing that the methods yield approximate solutions of the same convergence order as the best approximation from the subspace. These augmentation methods allow us to develop fast, accurate and stable nonconventional numerical algorithms for solving operator equations. In particular, for second kind equations, special splitting techniques are proposed to develop such algorithms. These algorithms are then applied to solve the linear systems resulting from matrix compression schemes using wavelet-like functions for solving Fredholm integral equations of the second kind. For this special case, a complete analysis for computational complexity and convergence order is presented. Numerical examples are included to demonstrate the efficiency and accuracy of the methods. In these examples we use the proposed augmentation method to solve large scale linear systems resulting from the recently developed wavelet Galerkin methods and fast collocation methods applied to integral equations of the secondkind. Our numerical results confirm that this augmentation method is particularly efficient for solving large scale linear systems induced from wavelet compression schemes.展开更多
Singular value system is applied to construct a new class of improved regularizing methods for solving the first kind of Fredholm integral equations with noisy data. By a priori choosing regularizing parameters, optim...Singular value system is applied to construct a new class of improved regularizing methods for solving the first kind of Fredholm integral equations with noisy data. By a priori choosing regularizing parameters, optimal convergence order of the regularized solution is obtained. And with aids of MATLAB software, numerical results are presented which roughly coincide with the theoretical analysis.展开更多
A common way to handle the Tikhonov regularization method for the first kind Fredholm integral equations,is first to discretize and then to work with the final linear system.This unavoidably inflicts discretization er...A common way to handle the Tikhonov regularization method for the first kind Fredholm integral equations,is first to discretize and then to work with the final linear system.This unavoidably inflicts discretization errors which may lead to disastrous results,especially when a quadrature rule is used.We propose to regularize directly the integral equation resulting in a continuous Tikhonov problem.The Tikhonov problem is reduced to a simple least squares problem by applying the Golub-Kahan bidiagonalization(GKB)directly to the integral operator.The regularization parameter and the iteration index are determined by the discrepancy principle approach.Moreover,we study the discrete version of the proposed method resulted from numerical evaluating the needed integrals.Focusing on the nodal values of the solution results in a weighted version of GKB-Tikhonov method for linear systems arisen from the Nystr¨om discretization.Finally,we use numerical experiments on a few test problems to illustrate the performance of our algorithms.展开更多
We consider solving integral equations of the second kind defined on the half-line [0, infinity) by the preconditioned conjugate gradient method. Convergence is known to be slow due to the non-compactness of the assoc...We consider solving integral equations of the second kind defined on the half-line [0, infinity) by the preconditioned conjugate gradient method. Convergence is known to be slow due to the non-compactness of the associated integral operator. In this paper, we construct two different circulant integral operators to be used as preconditioners for the method to speed up its convergence rate. We prove that if the given integral operator is close to a convolution-type integral operator, then the preconditioned systems will have spectrum clustered around 1 and hence the preconditioned conjugate gradient method will converge superlinearly. Numerical examples are given to illustrate the fast convergence.展开更多
In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficie...In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficiently smooth.In this case,the proposed method leads to a fully discrete linear system.We show that the fully discrete integral operator is stable in both infinite and weighted square norms.Furthermore,we establish that the approximate solution arrives at an optimal convergence order under the two norms.Finally,we give some numerical examples,which confirm the theoretical prediction of the exponential rate of convergence.展开更多
In this paper,the collocation methods are used to solve the boundary integral equations of the first kind on the polygon.By means of Sidi’s periodic transformation and domain decomposition,the errors are proved to po...In this paper,the collocation methods are used to solve the boundary integral equations of the first kind on the polygon.By means of Sidi’s periodic transformation and domain decomposition,the errors are proved to possess the multi-parameter asymptotic expansion at the interior point with the powers h^(3)/_(i)(i=1,...,d),which means that the approximations of higher accuracy and a posteriori estimation of the errors can be obtained by splitting extrapolations.Numerical experiments are carried out to show that the methods are very efficient.展开更多
While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approxima...While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approximate solution. In this paper,we analyse the Nystrom solution of one-dimensional nonlinear Volterra integral equation of the second kind and show that approkimate solution admits an asymptotic error expansion in even powers of the step-size h, beginning with a term in h2. So that the Richardson's extrapolation can be done. This will increase the accuracy of numerical solution greatly.展开更多
文摘In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.
文摘It is well known that the problem on the stability of the solutions for Fredholm integral equation of the first kind is an ill-posed problem in C[a, b] or L2 [a, b]. In this paper, the representation of the solution for Fredholm integral equation of the first kind is given if it has a unique solution. The stability of the solution is proved in the reproducing kernel space, namely, the measurement errors of the experimental data cannot result in unbounded errors of the true solution. The computation of approximate solution is also stable with respect to ||· ||c or ||L2· A numerical experiment shows that the method given in this paper is stable in the reproducing kernel space.
文摘The article is considering the third kind of nonlinear Volterra-Stieltjes integral equations with the solution by Lavrentyev regularizing operator. A uniqueness theorem was proved, and a regularization parameter was chosen. This can be used in further development of the theory of the integral equations in non-standard problems, classes in the numerical solution of third kind Volterra-Stieltjes integral equations, and when solving specific problems that lead to equations of the third kind.
文摘The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given.
基金Project supported by the National Natural Science Foundation of China(Grant No.10271074)
文摘Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be applied to estimating surplus eigenvalues of the Fredholm integral equation of the second kind when its partial eigenvalues have been known, and at the same time, it can be applied to solving the approximating solution of the given equation.
文摘The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By applying Abel transformation the dual integral equations are reduced to Fredholm integral equation of the second kind which is solved numerically.
文摘In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.
文摘In recent papers, Babolian & Delves [2] and Belward[3] described a Chebyshev series method for the solution of first kind integral equations. The expansion coefficients of the solution are determined as the solution of a mathematical programming problem.The method involves two regularization parameters, Cf and r, but values assigned to these parameters are heuristic in nature. Essah & Delves[7] described an algorithm for setting these parameters automatically, but it has some difficulties. In this paper we describe three iterative algorithms for computing these parameters for singular and non-singular first kind integral equations. We give also error estimates which are cheap to compute. Finally, we give a number of numerical examples showing that these algorithms work well in practice.
文摘In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.
文摘1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution (v) does not depend continuously on the data (g). In order to treat the ill-posedness and develop the numerical method, one reformulates the problem as a Volterra integral equation of the first kind wish a convolution type kernel (see Sneddon [1], Carslaw and Jaeger [2])
文摘Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations solutions of the third kind were considered. Volterra integral equations of the first and third kind with smooth kernels were studied, and proof of the existence of a multiparameter family of solutions is described. Additionally, linear Fredholm integral equations of the first kind were investigated, for which Lavrent’ev regularizing operators were constructed.
基金The NSF(0611005)of Jiangxi Province and the SF(2007293)of Jiangxi Provincial Education Department.
文摘In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergence analyses are presented in an abstract framework.
基金Supported in part by the Natural Science Foundation of China under grants 10371137and 10201034Foundation of Doctoral Program of National Higher Education of China under under grant 20030558008Guangdong Provincial Natural Science Foundation of China u
文摘We introduce multilevel augmentation methods for solving operator equations based on direct sum decompositions of the range space of the operator and the solution space of the operator equation and a matrix splitting scheme. We establish a general setting for the analysis of these methods, showing that the methods yield approximate solutions of the same convergence order as the best approximation from the subspace. These augmentation methods allow us to develop fast, accurate and stable nonconventional numerical algorithms for solving operator equations. In particular, for second kind equations, special splitting techniques are proposed to develop such algorithms. These algorithms are then applied to solve the linear systems resulting from matrix compression schemes using wavelet-like functions for solving Fredholm integral equations of the second kind. For this special case, a complete analysis for computational complexity and convergence order is presented. Numerical examples are included to demonstrate the efficiency and accuracy of the methods. In these examples we use the proposed augmentation method to solve large scale linear systems resulting from the recently developed wavelet Galerkin methods and fast collocation methods applied to integral equations of the secondkind. Our numerical results confirm that this augmentation method is particularly efficient for solving large scale linear systems induced from wavelet compression schemes.
基金Natural Science Foundation of Shandong Province (Y2001E03)
文摘Singular value system is applied to construct a new class of improved regularizing methods for solving the first kind of Fredholm integral equations with noisy data. By a priori choosing regularizing parameters, optimal convergence order of the regularized solution is obtained. And with aids of MATLAB software, numerical results are presented which roughly coincide with the theoretical analysis.
基金supported by the Iran National Science Foundation(INSF)[Grant No.96014705]supporting the project“Direct implementation of Tikhonov regularization for the first kind integral equations”.
文摘A common way to handle the Tikhonov regularization method for the first kind Fredholm integral equations,is first to discretize and then to work with the final linear system.This unavoidably inflicts discretization errors which may lead to disastrous results,especially when a quadrature rule is used.We propose to regularize directly the integral equation resulting in a continuous Tikhonov problem.The Tikhonov problem is reduced to a simple least squares problem by applying the Golub-Kahan bidiagonalization(GKB)directly to the integral operator.The regularization parameter and the iteration index are determined by the discrepancy principle approach.Moreover,we study the discrete version of the proposed method resulted from numerical evaluating the needed integrals.Focusing on the nodal values of the solution results in a weighted version of GKB-Tikhonov method for linear systems arisen from the Nystr¨om discretization.Finally,we use numerical experiments on a few test problems to illustrate the performance of our algorithms.
文摘We consider solving integral equations of the second kind defined on the half-line [0, infinity) by the preconditioned conjugate gradient method. Convergence is known to be slow due to the non-compactness of the associated integral operator. In this paper, we construct two different circulant integral operators to be used as preconditioners for the method to speed up its convergence rate. We prove that if the given integral operator is close to a convolution-type integral operator, then the preconditioned systems will have spectrum clustered around 1 and hence the preconditioned conjugate gradient method will converge superlinearly. Numerical examples are given to illustrate the fast convergence.
基金supported by National Natural Science Foundation of China(Grant No.10901093)National Science Foundation of Shandong Province(Grant No.ZR2013AM006)
文摘In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficiently smooth.In this case,the proposed method leads to a fully discrete linear system.We show that the fully discrete integral operator is stable in both infinite and weighted square norms.Furthermore,we establish that the approximate solution arrives at an optimal convergence order under the two norms.Finally,we give some numerical examples,which confirm the theoretical prediction of the exponential rate of convergence.
文摘In this paper,the collocation methods are used to solve the boundary integral equations of the first kind on the polygon.By means of Sidi’s periodic transformation and domain decomposition,the errors are proved to possess the multi-parameter asymptotic expansion at the interior point with the powers h^(3)/_(i)(i=1,...,d),which means that the approximations of higher accuracy and a posteriori estimation of the errors can be obtained by splitting extrapolations.Numerical experiments are carried out to show that the methods are very efficient.
文摘While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approximate solution. In this paper,we analyse the Nystrom solution of one-dimensional nonlinear Volterra integral equation of the second kind and show that approkimate solution admits an asymptotic error expansion in even powers of the step-size h, beginning with a term in h2. So that the Richardson's extrapolation can be done. This will increase the accuracy of numerical solution greatly.