期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
IAACS: Image aesthetic assessment through color composition and space formation
1
作者 Bailin YANG Changrui ZHU +3 位作者 Frederick WBLI Tianxiang WEI Xiaohui LIANG Qingxu WANG 《Virtual Reality & Intelligent Hardware》 2023年第1期42-56,共15页
Background Determining how an image is visually appealing is a complicated and subjective task. This motivates the use of a machine-learning model to evaluate image aesthetics automatically by matching the aesthetics ... Background Determining how an image is visually appealing is a complicated and subjective task. This motivates the use of a machine-learning model to evaluate image aesthetics automatically by matching the aesthetics of the general public. Although deep learning methods have successfully learned good visual features from images,correctly assessing the aesthetic quality of an image remains a challenge for deep learning. Methods To address this, we propose a novel multiview convolutional neural network to assess image aesthetics assessment through color composition and space formation(IAACS). Specifically, from different views of an image––including its key color components and their contributions, the image space formation, and the image itself––our network extracts the corresponding features through our proposed feature extraction module(FET) and the Image Net weight-based classification model. Result By fusing the extracted features, our network produces an accurate prediction score distribution for image aesthetics. The experimental results show that we have achieved superior performance. 展开更多
关键词 image aesthetic assessment Color composition Space formation Deep learning
下载PDF
Joint regression and learning from pairwise rankings for personalized image aesthetic assessment
2
作者 Jin Zhou Qing Zhang +2 位作者 Jian-Hao Fan Wei Sun Wei-Shi Zheng 《Computational Visual Media》 EI CSCD 2021年第2期241-252,共12页
Recent image aesthetic assessment methods have achieved remarkable progress due to the emergence of deep convolutional neural networks(CNNs).However,these methods focus primarily on predicting generally perceived pref... Recent image aesthetic assessment methods have achieved remarkable progress due to the emergence of deep convolutional neural networks(CNNs).However,these methods focus primarily on predicting generally perceived preference of an image,making them usually have limited practicability,since each user may have completely different preferences for the same image.To address this problem,this paper presents a novel approach for predicting personalized image aesthetics that fit an individual user’s personal taste.We achieve this in a coarse to fine manner,by joint regression and learning from pairwise rankings.Specifically,we first collect a small subset of personal images from a user and invite him/her to rank the preference of some randomly sampled image pairs.We then search for the K-nearest neighbors of the personal images within a large-scale dataset labeled with average human aesthetic scores,and use these images as well as the associated scores to train a generic aesthetic assessment model by CNN-based regression.Next,we fine-tune the generic model to accommodate the personal preference by training over the rankings with a pairwise hinge loss.Experiments demonstrate that our method can effectively learn personalized image aesthetic preferences,clearly outperforming state-of-the-art methods.Moreover,we show that the learned personalized image aesthetic benefits a wide variety of applications. 展开更多
关键词 s personalized image aesthetic assessment deep convolutional neural networks pairwise ranking regression
原文传递
Cross-Modal Consistency with Aesthetic Similarity for Multimodal False Information Detection
3
作者 Weijian Fan Ziwei Shi 《Computers, Materials & Continua》 SCIE EI 2024年第5期2723-2741,共19页
With the explosive growth of false information on social media platforms, the automatic detection of multimodalfalse information has received increasing attention. Recent research has significantly contributed to mult... With the explosive growth of false information on social media platforms, the automatic detection of multimodalfalse information has received increasing attention. Recent research has significantly contributed to multimodalinformation exchange and fusion, with many methods attempting to integrate unimodal features to generatemultimodal news representations. However, they still need to fully explore the hierarchical and complex semanticcorrelations between different modal contents, severely limiting their performance detecting multimodal falseinformation. This work proposes a two-stage detection framework for multimodal false information detection,called ASMFD, which is based on image aesthetic similarity to segment and explores the consistency andinconsistency features of images and texts. Specifically, we first use the Contrastive Language-Image Pre-training(CLIP) model to learn the relationship between text and images through label awareness and train an imageaesthetic attribute scorer using an aesthetic attribute dataset. Then, we calculate the aesthetic similarity betweenthe image and related images and use this similarity as a threshold to divide the multimodal correlation matrixinto consistency and inconsistencymatrices. Finally, the fusionmodule is designed to identify essential features fordetectingmultimodal false information. In extensive experiments on four datasets, the performance of the ASMFDis superior to state-of-the-art baseline methods. 展开更多
关键词 Social media false information detection image aesthetic assessment cross-modal consistency
下载PDF
Learning to assess visual aesthetics of food images 被引量:3
4
作者 Kekai Sheng Weiming Dong +4 位作者 Haibin Huang Menglei Chai Yong Zhang Chongyang Ma Bao-Gang Hu 《Computational Visual Media》 EI CSCD 2021年第1期139-152,共14页
Distinguishing aesthetically pleasing food photos from others is an important visual analysis task for social media and ranking systems related to food.Nevertheless,aesthetic assessment of food images remains a challe... Distinguishing aesthetically pleasing food photos from others is an important visual analysis task for social media and ranking systems related to food.Nevertheless,aesthetic assessment of food images remains a challenging and relatively unexplored task,largely due to the lack of related food image datasets and practical knowledge.Thus,we present the Gourmet Photography Dataset(GPD),the first largescale dataset for aesthetic assessment of food photos.It contains 24,000 images with corresponding binary aesthetic labels,covering a large variety of foods and scenes.We also provide a non-stationary regularization method to combat over-fitting and enhance the ability of tuned models to generalize.Quantitative results from extensive experiments,including a generalization ability test,verify that neural networks trained on the GPD achieve comparable performance to human experts on the task of aesthetic assessment.We reveal several valuable findings to support further research and applications related to visual aesthetic analysis of food images.To encourage further research,we have made the GPD publicly available at https://github.com/Openning07/GPA. 展开更多
关键词 image aesthetic assessment food image analysis DATASET REGULARIZATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部