The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problem...The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problems associated with its geographical position and the intensive exploitation of resources by an overabundant population (population density of 962 inhabitants/km2). Some thirty years after the economic liberalization and the opening of the country to international markets, agricultural land use patterns in the Red River Delta, particularly in the coastal area, have undergone many changes. Remote sensing is a particularly powerful tool in processing and providing spatial information for monitoring land use changes. The main methodological objective is to find a solution to process the many heterogeneous coastal land use parameters, so as to describe it in all its complexity, specifically by making use of the latest European satellite data (Sentinel-2). This complexity is due to local variations in ecological conditions, but also to anthropogenic factors that directly and indirectly influence land use dynamics. The methodological objective was to develop a new Geographic Object-based Image Analysis (GEOBIA) approach for mapping coastal areas using Sentinel-2 data and Landsat 8. By developing a new segmentation, accuracy measure, in this study was determined that segmentation accuracies decrease with increasing segmentation scales and that the negative impact of under-segmentation errors significantly increases at a large scale. An Estimation of Scale Parameter (ESP) tool was then used to determine the optimal segmentation parameter values. A popular machine learning algorithms (Random Forests-RFs) is used. For all classifications algorithm, an increase in overall accuracy was observed with the full synergistic combination of available data sets.展开更多
Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and diffe...Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research.展开更多
Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free a...Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover,coastal areas often encounter significant cloud cover,especially in tropical areas,which makes the classification in those areas non-ideal.To solve this problem,we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR)data with the recently popular object-based image analysis(OBIA)method and used the Landsat Operational Land Imager(OLI)and Phased Array type L-band Synthetic Aperture Radar(PALSAR)images acquired in Singapore in 2017 as a case study.We designed experiments to confirm two critical factors of this framework:one is the segmentation scale that determines the average object size,and the other is the classification feature.Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80,and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features,especially in areas with cloud cover.Based on the land cover generated by this framework,we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade.To clarify the disaster response plan for different geographical environments,we classified risk based on altitude and distance from shore.The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk;these regions may need to focus on strengthening disaster prevention construction.This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters,especially those in cloudy coastal areas.展开更多
Automatic road detection, in dense urban areas, is a challenging application in the remote sensing community. This is mainly because of physical and geometrical variations of road pixels, their spectral similarity to ...Automatic road detection, in dense urban areas, is a challenging application in the remote sensing community. This is mainly because of physical and geometrical variations of road pixels, their spectral similarity to other features such as buildings, parking lots and sidewalks, and the obstruction by vehicles and trees. These problems are real obstacles in precise detection and identification of urban roads from high-resolution satellite imagery. One of the promising strategies to deal with this problem is using multi-sensors data to reduce the uncertainties of detection. In this paper, an integrated object-based analysis framework was developed for detecting and extracting various types of urban roads from high-resolution optical images and Lidar data. The proposed method is designed and implemented using a rule-oriented approach based on a masking strategy. The overall accuracy (OA) of the final road map was 89.2%, and the kappa coefficient of agreement was 0.83, which show the efficiency and performance of the method in different conditions and interclass noises. The results also demonstrate the high capability of this object-based method in simultaneous identification of a wide variety of road elements in complex urban areas using both high-resolution satellite images and Lidar data.展开更多
Casablanca, Morocco's economic capital continues today to fight against the proliferation of informal settle- ments affecting its urban fabric illustrated especially by the slums. Actually Casablanca represents 25...Casablanca, Morocco's economic capital continues today to fight against the proliferation of informal settle- ments affecting its urban fabric illustrated especially by the slums. Actually Casablanca represents 25% of the total slums of Morocco [1]. These are the habitats of all deprived of healthy sanitary conditions and judged precarious from the perspective humanitarian and below the acceptable. The majority of the inhabi- tants of these slums are from the rural exodus with insufficient income to meet the basic needs of daily life. Faced with this situation and to eradicate these habitats, the Moroccan government has launched since 2004 an entire program to create cities without slums (C.W.S.) to resettle or relocate families. Indeed the process control and monitoring of this program requires first identifying and detecting spatial habitats. To achieve these tasks, conventional methods such as information gathering, mapping, use of databases and statistics often have shown their limits and are sometimes outdated. It is within this framework and that of the great German Morocco project “Urban agriculture as an integrative factor of development that fits our project de- tection of slums in Casablanca. The use of satellite imagery, particulary the HSR, has the advantage of providing the physical coverage of urban land but it raises the difficulty of choosing the appropriate method to apply.This paper is actually to develop new approaches based mainly on object-oriented classification of high spatial resolution satellite images for the detection of slums.This approach has been developed for mapping the urban land through by integration of several types of information (spectral, spatial, contextual ...) (Hofmann, P ., 2001, Herold et al. 2002b;Van Der Sande et al., 2003, Benz et al., 2004, Nobrega et al., 2006). In order to refine the result of classification, we applied mathematical morphology and in particular the closing filter. The data from this classification (binary image), which then will be used in a spatial data- base (ArcGIS).展开更多
语义分割是遥感影像分析中的重要技术之一。现有方法(如基于深度卷积神经网络的方法等)虽然在语义分割中取得了显著进展,但往往需要大量训练数据。基于图模型的马尔可夫随机场模型(Markov random field model,MRF)提出了一种不依赖训练...语义分割是遥感影像分析中的重要技术之一。现有方法(如基于深度卷积神经网络的方法等)虽然在语义分割中取得了显著进展,但往往需要大量训练数据。基于图模型的马尔可夫随机场模型(Markov random field model,MRF)提出了一种不依赖训练数据的无监督语义分割思路,可以有效地刻画地物空间关系,并对地物空间分布的统计规律进行建模。但现有的MRF模型方法通常建立在基于像素或对象的单一粒度基元上,难以充分利用影像信息,语义分割效果不佳。针对上述问题,引入交替方向乘子法(alternative direction method of multiplier,ADMM)并将其离散化,提出了一种像素与对象基元协同的MRF模型无监督语义分割方法(MRF-ADMM)。首先构建像素基元和对象基元两个概率图,其中像素基元概率图用于刻画影像的细节信息,保持语义分割的边界;对象基元概率图用于描述较大范围的空间关系,以应对遥感影像地物内部的高异质性,使分割结果中地物内部具有良好的区域完整性。在模型求解过程中,针对像素和对象基元的特点,提出了一种离散化的ADMM方法,并将其用于两种基元类别标记的传递与更新,实现像素基元细节信息和对象基元区域信息的协同优化。高分二号和航拍影像等不同数据库不同类型遥感影像的语义分割实验结果表明,相较于现有的MRF模型,提出的MRF-ADMM方法能有效地协同不同粒度基元的优点,优化语义分割结果。展开更多
Inclusion of textures in image classification has been shown beneficial.This paper studies an efficient use of semivariogram features for object-based high-resolution image classification.First,an input image is divid...Inclusion of textures in image classification has been shown beneficial.This paper studies an efficient use of semivariogram features for object-based high-resolution image classification.First,an input image is divided into segments,for each of which a semivariogram is then calculated.Second,candidate features are extracted as a number of key locations of the semivariogram functions.Then we use an improved Relief algorithm and the principal component analysis to select independent and significant features.Then the selected prominent semivariogram features and the conventional spectral features are combined to constitute a feature vector for a support vector machine classifier.The effect of such selected semivariogram features is compared with those of the gray-level co-occurrence matrix(GLCM)features and window-based semivariogram texture features(STFs).Tests with aerial and satellite images show that such selected semivariogram features are of a more beneficial supplement to spectral features.The described method in this paper yields a higher classification accuracy than the combination of spectral and GLCM features or STFs.展开更多
文摘The majority of the population and economic activity of the northern half of Vietnam is clustered in the Red River Delta and about half of the country’s rice production takes place here. There are significant problems associated with its geographical position and the intensive exploitation of resources by an overabundant population (population density of 962 inhabitants/km2). Some thirty years after the economic liberalization and the opening of the country to international markets, agricultural land use patterns in the Red River Delta, particularly in the coastal area, have undergone many changes. Remote sensing is a particularly powerful tool in processing and providing spatial information for monitoring land use changes. The main methodological objective is to find a solution to process the many heterogeneous coastal land use parameters, so as to describe it in all its complexity, specifically by making use of the latest European satellite data (Sentinel-2). This complexity is due to local variations in ecological conditions, but also to anthropogenic factors that directly and indirectly influence land use dynamics. The methodological objective was to develop a new Geographic Object-based Image Analysis (GEOBIA) approach for mapping coastal areas using Sentinel-2 data and Landsat 8. By developing a new segmentation, accuracy measure, in this study was determined that segmentation accuracies decrease with increasing segmentation scales and that the negative impact of under-segmentation errors significantly increases at a large scale. An Estimation of Scale Parameter (ESP) tool was then used to determine the optimal segmentation parameter values. A popular machine learning algorithms (Random Forests-RFs) is used. For all classifications algorithm, an increase in overall accuracy was observed with the full synergistic combination of available data sets.
文摘Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402003)the CAS Earth Big Data Science Project(No.XDA19060303)the Innovation Project of the State Key Laboratory of Resources and Environmental Information System(No.O88RAA01YA)
文摘Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover,coastal areas often encounter significant cloud cover,especially in tropical areas,which makes the classification in those areas non-ideal.To solve this problem,we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR)data with the recently popular object-based image analysis(OBIA)method and used the Landsat Operational Land Imager(OLI)and Phased Array type L-band Synthetic Aperture Radar(PALSAR)images acquired in Singapore in 2017 as a case study.We designed experiments to confirm two critical factors of this framework:one is the segmentation scale that determines the average object size,and the other is the classification feature.Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80,and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features,especially in areas with cloud cover.Based on the land cover generated by this framework,we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade.To clarify the disaster response plan for different geographical environments,we classified risk based on altitude and distance from shore.The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk;these regions may need to focus on strengthening disaster prevention construction.This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters,especially those in cloudy coastal areas.
文摘Automatic road detection, in dense urban areas, is a challenging application in the remote sensing community. This is mainly because of physical and geometrical variations of road pixels, their spectral similarity to other features such as buildings, parking lots and sidewalks, and the obstruction by vehicles and trees. These problems are real obstacles in precise detection and identification of urban roads from high-resolution satellite imagery. One of the promising strategies to deal with this problem is using multi-sensors data to reduce the uncertainties of detection. In this paper, an integrated object-based analysis framework was developed for detecting and extracting various types of urban roads from high-resolution optical images and Lidar data. The proposed method is designed and implemented using a rule-oriented approach based on a masking strategy. The overall accuracy (OA) of the final road map was 89.2%, and the kappa coefficient of agreement was 0.83, which show the efficiency and performance of the method in different conditions and interclass noises. The results also demonstrate the high capability of this object-based method in simultaneous identification of a wide variety of road elements in complex urban areas using both high-resolution satellite images and Lidar data.
文摘Casablanca, Morocco's economic capital continues today to fight against the proliferation of informal settle- ments affecting its urban fabric illustrated especially by the slums. Actually Casablanca represents 25% of the total slums of Morocco [1]. These are the habitats of all deprived of healthy sanitary conditions and judged precarious from the perspective humanitarian and below the acceptable. The majority of the inhabi- tants of these slums are from the rural exodus with insufficient income to meet the basic needs of daily life. Faced with this situation and to eradicate these habitats, the Moroccan government has launched since 2004 an entire program to create cities without slums (C.W.S.) to resettle or relocate families. Indeed the process control and monitoring of this program requires first identifying and detecting spatial habitats. To achieve these tasks, conventional methods such as information gathering, mapping, use of databases and statistics often have shown their limits and are sometimes outdated. It is within this framework and that of the great German Morocco project “Urban agriculture as an integrative factor of development that fits our project de- tection of slums in Casablanca. The use of satellite imagery, particulary the HSR, has the advantage of providing the physical coverage of urban land but it raises the difficulty of choosing the appropriate method to apply.This paper is actually to develop new approaches based mainly on object-oriented classification of high spatial resolution satellite images for the detection of slums.This approach has been developed for mapping the urban land through by integration of several types of information (spectral, spatial, contextual ...) (Hofmann, P ., 2001, Herold et al. 2002b;Van Der Sande et al., 2003, Benz et al., 2004, Nobrega et al., 2006). In order to refine the result of classification, we applied mathematical morphology and in particular the closing filter. The data from this classification (binary image), which then will be used in a spatial data- base (ArcGIS).
文摘语义分割是遥感影像分析中的重要技术之一。现有方法(如基于深度卷积神经网络的方法等)虽然在语义分割中取得了显著进展,但往往需要大量训练数据。基于图模型的马尔可夫随机场模型(Markov random field model,MRF)提出了一种不依赖训练数据的无监督语义分割思路,可以有效地刻画地物空间关系,并对地物空间分布的统计规律进行建模。但现有的MRF模型方法通常建立在基于像素或对象的单一粒度基元上,难以充分利用影像信息,语义分割效果不佳。针对上述问题,引入交替方向乘子法(alternative direction method of multiplier,ADMM)并将其离散化,提出了一种像素与对象基元协同的MRF模型无监督语义分割方法(MRF-ADMM)。首先构建像素基元和对象基元两个概率图,其中像素基元概率图用于刻画影像的细节信息,保持语义分割的边界;对象基元概率图用于描述较大范围的空间关系,以应对遥感影像地物内部的高异质性,使分割结果中地物内部具有良好的区域完整性。在模型求解过程中,针对像素和对象基元的特点,提出了一种离散化的ADMM方法,并将其用于两种基元类别标记的传递与更新,实现像素基元细节信息和对象基元区域信息的协同优化。高分二号和航拍影像等不同数据库不同类型遥感影像的语义分割实验结果表明,相较于现有的MRF模型,提出的MRF-ADMM方法能有效地协同不同粒度基元的优点,优化语义分割结果。
基金This work was supported by the National Natural Science Foundation of China[grant number 41101410]the Comprehensive Transportation Applications of High-resolution Remote Sensing program[grant number 07-Y30B10-9001-14/16]+1 种基金the Key Laboratory of Surveying Mapping and Geoinformation in Geographical Condition Monitoring[grant number 2014NGCM]the Science and Technology Plan of Sichuan Bureau of Surveying,Mapping and Geoinformation,China[grant number J2014ZC02].
文摘Inclusion of textures in image classification has been shown beneficial.This paper studies an efficient use of semivariogram features for object-based high-resolution image classification.First,an input image is divided into segments,for each of which a semivariogram is then calculated.Second,candidate features are extracted as a number of key locations of the semivariogram functions.Then we use an improved Relief algorithm and the principal component analysis to select independent and significant features.Then the selected prominent semivariogram features and the conventional spectral features are combined to constitute a feature vector for a support vector machine classifier.The effect of such selected semivariogram features is compared with those of the gray-level co-occurrence matrix(GLCM)features and window-based semivariogram texture features(STFs).Tests with aerial and satellite images show that such selected semivariogram features are of a more beneficial supplement to spectral features.The described method in this paper yields a higher classification accuracy than the combination of spectral and GLCM features or STFs.