针对现有的图文情感分析方法未能充分考虑图像和文本之间存在的语义不一致问题,以及未对图像和文本表达不同情感的数据做相应处理,从而导致分类不精准的现象,提出基于语感一致性的社交媒体图文情感分析(social media image-text sentime...针对现有的图文情感分析方法未能充分考虑图像和文本之间存在的语义不一致问题,以及未对图像和文本表达不同情感的数据做相应处理,从而导致分类不精准的现象,提出基于语感一致性的社交媒体图文情感分析(social media image-text sentiment analysis based on semantic sense consistency,SA-SSC)方法。首先,使用RoBERTa和双向门控循环单元(bidirectional gated recurrent unit,BiGRU)提取文本语义特征,使用ResNet101获取图像视觉特征;然后,采用指导注意力(guided attention,GA)从图像区域情感和文本内容找到表达用户情感的显著性区域,得到新的图像视觉特征;最后,利用协同注意力将2种模态的特征进行融合,进而完成情感分类。在本文构建的MMSD-CN中文社交媒体图文情感数据集和CCIR-YQ数据集上进行了实验验证,结果表明,SA-SSC方法可以有效减弱图文语感不一致对社交媒体图文情感分析造成的影响,在各项评价指标上均取得了较高的提升。展开更多
文摘针对现有的图文情感分析方法未能充分考虑图像和文本之间存在的语义不一致问题,以及未对图像和文本表达不同情感的数据做相应处理,从而导致分类不精准的现象,提出基于语感一致性的社交媒体图文情感分析(social media image-text sentiment analysis based on semantic sense consistency,SA-SSC)方法。首先,使用RoBERTa和双向门控循环单元(bidirectional gated recurrent unit,BiGRU)提取文本语义特征,使用ResNet101获取图像视觉特征;然后,采用指导注意力(guided attention,GA)从图像区域情感和文本内容找到表达用户情感的显著性区域,得到新的图像视觉特征;最后,利用协同注意力将2种模态的特征进行融合,进而完成情感分类。在本文构建的MMSD-CN中文社交媒体图文情感数据集和CCIR-YQ数据集上进行了实验验证,结果表明,SA-SSC方法可以有效减弱图文语感不一致对社交媒体图文情感分析造成的影响,在各项评价指标上均取得了较高的提升。