A new simple method is presented for the wavelength calibration and measurement of poloidal rotation velocities with X-ray imaging crystal spectrometer(XICS)in magnetic fusion devices.In this method,the toroidal rot...A new simple method is presented for the wavelength calibration and measurement of poloidal rotation velocities with X-ray imaging crystal spectrometer(XICS)in magnetic fusion devices.In this method,the toroidal rotation of plasma is applied for high precise alignment and wavelength calibration of the poloidal XICS.The measurement threshold of poloidal rotation velocity can be lowered to 1-3 km/s with this method.展开更多
In the surface imaging of underwater structures, long working distance will reduce image quality due to the turbidity of water. To acquire high definition and large field of view(FOV) images for surface detection, a s...In the surface imaging of underwater structures, long working distance will reduce image quality due to the turbidity of water. To acquire high definition and large field of view(FOV) images for surface detection, a short-working-distance underwater imaging system is proposed based on camera array. A multi-view calibration and rectification method is developed. A look-up table(LUT) method and a multi-resolution spline(MRS) method are applied to stitch array images real-time and seamlessly.Experiments both in the air and in the water are conducted. Strength and weakness of the LUT and MRS methods are discussed.Based on the results, the effectiveness in surface detection of underwater structures is verified.展开更多
We introduce a novel method to accurately extract the optical parameters in terahertz reflection imaging. Our method builds on standard self-referencing methods using the reflected signal from the bottom of the imagin...We introduce a novel method to accurately extract the optical parameters in terahertz reflection imaging. Our method builds on standard self-referencing methods using the reflected signal from the bottom of the imaging window material to further compensate for time-dependent system fluctuations and position-dependent variation in the window thickness. Our proposed method not only improves the accuracy, but also simplifies the imaging procedure and reduces measurement times.展开更多
基金supported by National Natural Science Foundation of China(Nos.11175208,11305212 and 11405212)the National Magnetic Confinement Fusion Science Program of China(No.2013GB112004)JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(No.11261140328)
文摘A new simple method is presented for the wavelength calibration and measurement of poloidal rotation velocities with X-ray imaging crystal spectrometer(XICS)in magnetic fusion devices.In this method,the toroidal rotation of plasma is applied for high precise alignment and wavelength calibration of the poloidal XICS.The measurement threshold of poloidal rotation velocity can be lowered to 1-3 km/s with this method.
基金supported by the National Key Technology R&D Program(Grant No.2014BAK11B04)the National Natural Science Foundation of China(Grant Nos.11272089,11327201,11532005&11602056)
文摘In the surface imaging of underwater structures, long working distance will reduce image quality due to the turbidity of water. To acquire high definition and large field of view(FOV) images for surface detection, a short-working-distance underwater imaging system is proposed based on camera array. A multi-view calibration and rectification method is developed. A look-up table(LUT) method and a multi-resolution spline(MRS) method are applied to stitch array images real-time and seamlessly.Experiments both in the air and in the water are conducted. Strength and weakness of the LUT and MRS methods are discussed.Based on the results, the effectiveness in surface detection of underwater structures is verified.
基金Research Grants Council of Hong Kong(415313,14205514)Direct Grant,Chinese University of Hong Kong
文摘We introduce a novel method to accurately extract the optical parameters in terahertz reflection imaging. Our method builds on standard self-referencing methods using the reflected signal from the bottom of the imaging window material to further compensate for time-dependent system fluctuations and position-dependent variation in the window thickness. Our proposed method not only improves the accuracy, but also simplifies the imaging procedure and reduces measurement times.