With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image t...With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image transmission as an example, from the semantic communication's view, not all pixels in the images are equally important for certain receivers. The existing semantic communication systems directly perform semantic encoding and decoding on the whole image, in which the region of interest cannot be identified. In this paper, we propose a novel semantic communication system for image transmission that can distinguish between Regions Of Interest (ROI) and Regions Of Non-Interest (RONI) based on semantic segmentation, where a semantic segmentation algorithm is used to classify each pixel of the image and distinguish ROI and RONI. The system also enables high-quality transmission of ROI with lower communication overheads by transmissions through different semantic communication networks with different bandwidth requirements. An improved metric θPSNR is proposed to evaluate the transmission accuracy of the novel semantic transmission network. Experimental results show that our proposed system achieves a significant performance improvement compared with existing approaches, namely, existing semantic communication approaches and the conventional approach without semantics.展开更多
The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that c...The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced.This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images.The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression.This paper introduces a content-based image authentication mechanism that is suitable for usage across an untrusted network and resistant to data loss during transmission.By employing scale attributes and a key-dependent parametric Long Short-Term Memory(LSTM),it is feasible to improve the resilience of digital signatures against image deterioration and strengthen their security against malicious actions.Furthermore,the successful implementation of transmitting biometric data in a compressed format over a wireless network has been accomplished.For applications involving the transmission and sharing of images across a network.The suggested technique utilizes the scalability of a structural digital signature to attain a satisfactory equilibrium between security and picture transfer.An effective adaptive compression strategy was created to lengthen the overall lifetime of the network by sharing the processing of responsibilities.This scheme ensures a large reduction in computational and energy requirements while minimizing image quality loss.This approach employs multi-scale characteristics to improve the resistance of signatures against image deterioration.The proposed system attained a Gaussian noise value of 98%and a rotation accuracy surpassing 99%.展开更多
With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color image...With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.展开更多
Multispectral image compression and encryption algorithms commonly suffer from issues such as low compression efficiency,lack of synchronization between the compression and encryption proces-ses,and degradation of int...Multispectral image compression and encryption algorithms commonly suffer from issues such as low compression efficiency,lack of synchronization between the compression and encryption proces-ses,and degradation of intrinsic image structure.A novel approach is proposed to address these is-sues.Firstly,a chaotic sequence is generated using the Lorenz three-dimensional chaotic mapping to initiate the encryption process,which is XORed with each spectral band of the multispectral image to complete the initial encryption of the image.Then,a two-dimensional lifting 9/7 wavelet transform is applied to the processed image.Next,a key-sensitive Arnold scrambling technique is employed on the resulting low-frequency image.It effectively eliminates spatial redundancy in the multispectral image while enhancing the encryption process.To optimize the compression and encryption processes further,fast Tucker decomposition is applied to the wavelet sub-band tensor.It effectively removes both spectral redundancy and residual spatial redundancy in the multispectral image.Finally,the core tensor and pattern matrix obtained from the decomposition are subjected to entropy encoding,and real-time chaotic encryption is implemented during the encoding process,effectively integrating compression and encryption.The results show that the proposed algorithm is suitable for occasions with high requirements for compression and encryption,and it provides valuable insights for the de-velopment of compression and encryption in multispectral field.展开更多
The isotherm is an important feature of infrared satellite cloud images (ISCI), which can directly reveal substantial information of cloud systems. The isotherm extraction of ISCI can remove the redundant information ...The isotherm is an important feature of infrared satellite cloud images (ISCI), which can directly reveal substantial information of cloud systems. The isotherm extraction of ISCI can remove the redundant information and therefore helps to compress the information of ISCI. In this paper, an isotherm extraction method is presented. The main aggregate of clouds can be segmented based on mathematical morphology. T algorithm and IP algorithm are then applied to extract the isotherms from the main aggregate of clouds. A concrete example for the extraction of isotherm based on IBM SP2 is described. The result shows that this is a high efficient algorithm. It can be used in feature extractions of infrared images for weather forecasts.展开更多
To utilize residual redundancy to reduce the error induced by fading channels and decrease the complexity of the field model to describe the probability structure for residual redundancy, a simplified statistical mode...To utilize residual redundancy to reduce the error induced by fading channels and decrease the complexity of the field model to describe the probability structure for residual redundancy, a simplified statistical model for residual redundancy and a low complexity joint source-channel decoding(JSCD) algorithm are proposed. The complicated residual redundancy in wavelet compressed images is decomposed into several independent 1-D probability check equations composed of Markov chains and it is regarded as a natural channel code with a structure similar to the low density parity check (LDPC) code. A parallel sum-product (SP) and iterative JSCD algorithm is proposed. Simulation results show that the proposed JSCD algorithm can make full use of residual redundancy in different directions to correct errors and improve the peak signal noise ratio (PSNR) of the reconstructed image and reduce the complexity and delay of JSCD. The performance of JSCD is more robust than the traditional separated encoding system with arithmetic coding in the same data rate.展开更多
[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of gua...[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of guaranteeing image quality in the rape crop monitoring system in Qinling Mountains. [Method] In the proposal, the color image was divided into brightness images with three fundamental colors, followed by sub-image division and DCT treatment. Then, coefficients of transform domain were quantized, and encoded and compressed as per Huffman coding. Finally, decompression was conducted through inverse process and decompressed images were matched. [Result] The simulation results show that when compression ratio of the color image of rape crops was 11.972 3∶1, human can not distinguish the differences between the decompressed images and the source images with naked eyes; when ratio was as high as 53.565 6∶1, PSNR was still above 30 dD,encoding efficiency achieved over 0.78 and redundancy was less than 0.22. [Conclusion] The results indicate that the proposed color image compression technology can achieve higher compression ratio on the premise of good image quality. In addition, image encoding quality and decompressed images achieved better results, which fully met requirement of image storage and transmission in monitoring system of rape crop in the Qinling Mountains.展开更多
By investigating the limitation of existing wavelet tree based image compression methods, we propose a novel wavelet fractal image compression method in this paper. Briefly, the initial errors are appointed given the ...By investigating the limitation of existing wavelet tree based image compression methods, we propose a novel wavelet fractal image compression method in this paper. Briefly, the initial errors are appointed given the different levels of importance accorded the frequency sublevel band wavelet coefficients. Higher frequency sublevel bands would lead to larger initial errors. As a result, the sizes of sublevel blocks and super blocks would be changed according to the initial errors. The matching sizes between sublevel blocks and super blocks would be changed according to the permitted errors and compression rates. Systematic analyses are performed and the experimental results demonstrate that the proposed method provides a satisfactory performance with a clearly increasing rate of compression and speed of encoding without reducing SNR and the quality of decoded images. Simulation results show that our method is superior to the traditional wavelet tree based methods of fractal image compression.展开更多
Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability...Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm.展开更多
A chaos-based cryptosystem for fractal image coding is proposed. The Renyi chaotic map is employed to determine the order of processing the range blocks and to generate the keystream for masking the encoded sequence. ...A chaos-based cryptosystem for fractal image coding is proposed. The Renyi chaotic map is employed to determine the order of processing the range blocks and to generate the keystream for masking the encoded sequence. Compared with the standard approach of fraetal image coding followed by the Advanced Encryption Standard, our scheme offers a higher sensitivity to both plaintext and ciphertext at a comparable operating efficiency. The keystream generated by the Renyi chaotic map passes the randomness tests set by the United States National Institute of Standards and Technology, and so the proposed scheme is sensitive to the key.展开更多
Based on Jacquin's work. this paper presents an adaptive block-based fractal image coding scheme. Firstly. masking functions are used to classify range blocks and weight the mean Square error (MSE) of images. Seco...Based on Jacquin's work. this paper presents an adaptive block-based fractal image coding scheme. Firstly. masking functions are used to classify range blocks and weight the mean Square error (MSE) of images. Secondly, an adaptive block partition scheme is introduced by developing the quadtree partition method. Thirdly. a piecewise uniform quantization strategy is appled to quantize the luminance shifting. Finally. experiment results are shown and compared with what reported by Jacquin and Lu to verify the validity of the methods addressed by the authors.展开更多
A blind digital image forensic method for detecting copy-paste forgery between JPEG images was proposed.Two copy-paste tampering scenarios were introduced at first:the tampered image was saved in an uncompressed forma...A blind digital image forensic method for detecting copy-paste forgery between JPEG images was proposed.Two copy-paste tampering scenarios were introduced at first:the tampered image was saved in an uncompressed format or in a JPEG compressed format.Then the proposed detection method was analyzed and simulated for all the cases of the two tampering scenarios.The tampered region is detected by computing the averaged sum of absolute difference(ASAD) images between the examined image and a resaved JPEG compressed image at different quality factors.The experimental results show the advantages of the proposed method:capability of detecting small and/or multiple tampered regions,simple computation,and hence fast speed in processing.展开更多
A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, i...A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression.展开更多
A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are...A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are firstly introduced into neural network in the proposed algorithm. Extensive experiments are conducted on standard testing images and the results show that the pro- posed method can improve the quality of the reconstructed images significantly.展开更多
This paper utilizes a spatial texture correlation and the intelligent classification algorithm (ICA) search strategy to speed up the encoding process and improve the bit rate for fractal image compression. Texture f...This paper utilizes a spatial texture correlation and the intelligent classification algorithm (ICA) search strategy to speed up the encoding process and improve the bit rate for fractal image compression. Texture features is one of the most important properties for the representation of an image. Entropy and maximum entry from co-occurrence matrices are used for representing texture features in an image. For a range block, concerned domain blocks of neighbouring range blocks with similar texture features can be searched. In addition, domain blocks with similar texture features are searched in the ICA search process. Experiments show that in comparison with some typical methods, the proposed algorithm significantly speeds up the encoding process and achieves a higher compression ratio, with a slight diminution in the quality of the reconstructed image; in comparison with a spatial correlation scheme, the proposed scheme spends much less encoding time while the compression ratio and the quality of the reconstructed image are almost the same.展开更多
The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear...The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear morphological predictor follows the update adaptive lifting to result in fewer large wavelet coefficients near edges for reducing coding. The nonlinear adaptive wavelet transforms can also allow perfect reconstruction without any overhead cost. Experiment results are given to show lower entropy of the adaptive transformed images than those of the non-adaptive case and great applicable potentiality in lossless image compresslon.展开更多
A new method using plane fitting to decide whether a domain block is similar enough to a given range block is proposed in this paper. First, three coefficients are computed for describing each range and domain block. ...A new method using plane fitting to decide whether a domain block is similar enough to a given range block is proposed in this paper. First, three coefficients are computed for describing each range and domain block. Then, the best-matched one for every range block is obtained by analysing the relation between their coefficients. Experimental results show that the proposed method can shorten encoding time markedly, while the retrieved image quality is still acceptable. In the decoding step, a kind of simple line fitting on block boundaries is used to reduce blocking effects. At the same time, the proposed method can also achieve a high compression ratio.展开更多
This paper presents a novel method utilizing wavelets with particle swarm optimization(PSO)for medical image compression.Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing ima...This paper presents a novel method utilizing wavelets with particle swarm optimization(PSO)for medical image compression.Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing images using thresholding.It transfers images into subband details and approximations using a modified Haar wavelet(MHW),and then applies a threshold.PSO is applied for selecting a particle assigned to the threshold values for the subbands.Nine positions assigned to particles values are used to represent population.Every particle updates its position depending on the global best position(gbest)(for all details subband)and local best position(pbest)(for a subband).The fitness value is developed to terminate PSO when the difference between two local best(pbest)successors is smaller than a prescribe value.The experiments are applied on five different medical image types,i.e.,MRI,CT,and X-ray.Results show that the proposed algorithm can be more preferably to compress medical images than other existing wavelets techniques from peak signal to noise ratio(PSNR)and compression ratio(CR)points of views.展开更多
To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize tr...To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize transform in spatial domain, the proposed algorithm applies transform in spectral domain. Set-partitioning-based approach is applied to reorganize DCT coefficients into waveletlike tree structure and extract the sign, refinement, and significance bitplanes. The extracted refinement bits are Gray encoded. Because of the dependency along the line dimension of hyperspectral images, low density paritycheck-(LDPC)-based Slepian-Wolf coder is adopted to implement the DSC strategy. Experimental results on airborne visible/infrared imaging spectrometer (AVIRIS) dataset show that the proposed paradigm achieves up to 6 dB improvement over DSC-based coders which apply transform in spatial domain, with significantly reduced computational complexity and memory storage.展开更多
An edge oriented image sequence coding scheme is presented. On the basis of edge detecting, an image could be divided into the sensitized region and the smooth region. In this scheme, the architecture of sensitized r...An edge oriented image sequence coding scheme is presented. On the basis of edge detecting, an image could be divided into the sensitized region and the smooth region. In this scheme, the architecture of sensitized region is approximated with linear type of segments. Then a rectangle belt is constructed for each segment. Finally, the gray value distribution in the region is fitted by normal forms polynomials. The model matching and motion analysis are also based on the architecture of sensitized region. For the smooth region we use the run length scanning and linear approximating. By means of normal forms polynomial fitting and motion prediction by matching, the images are compressed. It is shown through the simulations that the subjective quality of reconstructed picture is excellent at 0.0075 bit per pel.展开更多
基金supported in part by collaborative research with Toyota Motor Corporation,in part by ROIS NII Open Collaborative Research under Grant 21S0601,in part by JSPS KAKENHI under Grants 20H00592,21H03424.
文摘With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image transmission as an example, from the semantic communication's view, not all pixels in the images are equally important for certain receivers. The existing semantic communication systems directly perform semantic encoding and decoding on the whole image, in which the region of interest cannot be identified. In this paper, we propose a novel semantic communication system for image transmission that can distinguish between Regions Of Interest (ROI) and Regions Of Non-Interest (RONI) based on semantic segmentation, where a semantic segmentation algorithm is used to classify each pixel of the image and distinguish ROI and RONI. The system also enables high-quality transmission of ROI with lower communication overheads by transmissions through different semantic communication networks with different bandwidth requirements. An improved metric θPSNR is proposed to evaluate the transmission accuracy of the novel semantic transmission network. Experimental results show that our proposed system achieves a significant performance improvement compared with existing approaches, namely, existing semantic communication approaches and the conventional approach without semantics.
文摘The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced.This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images.The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression.This paper introduces a content-based image authentication mechanism that is suitable for usage across an untrusted network and resistant to data loss during transmission.By employing scale attributes and a key-dependent parametric Long Short-Term Memory(LSTM),it is feasible to improve the resilience of digital signatures against image deterioration and strengthen their security against malicious actions.Furthermore,the successful implementation of transmitting biometric data in a compressed format over a wireless network has been accomplished.For applications involving the transmission and sharing of images across a network.The suggested technique utilizes the scalability of a structural digital signature to attain a satisfactory equilibrium between security and picture transfer.An effective adaptive compression strategy was created to lengthen the overall lifetime of the network by sharing the processing of responsibilities.This scheme ensures a large reduction in computational and energy requirements while minimizing image quality loss.This approach employs multi-scale characteristics to improve the resistance of signatures against image deterioration.The proposed system attained a Gaussian noise value of 98%and a rotation accuracy surpassing 99%.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 71571091,71771112the State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds under Grant PAL-N201801the Excellent Talent Training Project of University of Science and Technology Liaoning under Grant 2019RC05.
文摘With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.
基金the National Natural Science Foundation of China(No.11803036)Climbing Program of Changchun University(No.ZKP202114).
文摘Multispectral image compression and encryption algorithms commonly suffer from issues such as low compression efficiency,lack of synchronization between the compression and encryption proces-ses,and degradation of intrinsic image structure.A novel approach is proposed to address these is-sues.Firstly,a chaotic sequence is generated using the Lorenz three-dimensional chaotic mapping to initiate the encryption process,which is XORed with each spectral band of the multispectral image to complete the initial encryption of the image.Then,a two-dimensional lifting 9/7 wavelet transform is applied to the processed image.Next,a key-sensitive Arnold scrambling technique is employed on the resulting low-frequency image.It effectively eliminates spatial redundancy in the multispectral image while enhancing the encryption process.To optimize the compression and encryption processes further,fast Tucker decomposition is applied to the wavelet sub-band tensor.It effectively removes both spectral redundancy and residual spatial redundancy in the multispectral image.Finally,the core tensor and pattern matrix obtained from the decomposition are subjected to entropy encoding,and real-time chaotic encryption is implemented during the encoding process,effectively integrating compression and encryption.The results show that the proposed algorithm is suitable for occasions with high requirements for compression and encryption,and it provides valuable insights for the de-velopment of compression and encryption in multispectral field.
文摘The isotherm is an important feature of infrared satellite cloud images (ISCI), which can directly reveal substantial information of cloud systems. The isotherm extraction of ISCI can remove the redundant information and therefore helps to compress the information of ISCI. In this paper, an isotherm extraction method is presented. The main aggregate of clouds can be segmented based on mathematical morphology. T algorithm and IP algorithm are then applied to extract the isotherms from the main aggregate of clouds. A concrete example for the extraction of isotherm based on IBM SP2 is described. The result shows that this is a high efficient algorithm. It can be used in feature extractions of infrared images for weather forecasts.
文摘To utilize residual redundancy to reduce the error induced by fading channels and decrease the complexity of the field model to describe the probability structure for residual redundancy, a simplified statistical model for residual redundancy and a low complexity joint source-channel decoding(JSCD) algorithm are proposed. The complicated residual redundancy in wavelet compressed images is decomposed into several independent 1-D probability check equations composed of Markov chains and it is regarded as a natural channel code with a structure similar to the low density parity check (LDPC) code. A parallel sum-product (SP) and iterative JSCD algorithm is proposed. Simulation results show that the proposed JSCD algorithm can make full use of residual redundancy in different directions to correct errors and improve the peak signal noise ratio (PSNR) of the reconstructed image and reduce the complexity and delay of JSCD. The performance of JSCD is more robust than the traditional separated encoding system with arithmetic coding in the same data rate.
基金Supported by Special Fund for Scientific Research of Shannxi Education Department(No:2010JK463)Shaanxi Natural Science Foundation(2011JE012)~~
文摘[Objective] The aim was to present a proposal about a new image compression technology, in order to make the image be able to be stored in a smaller space and be transmitted with smaller bit rate on the premise of guaranteeing image quality in the rape crop monitoring system in Qinling Mountains. [Method] In the proposal, the color image was divided into brightness images with three fundamental colors, followed by sub-image division and DCT treatment. Then, coefficients of transform domain were quantized, and encoded and compressed as per Huffman coding. Finally, decompression was conducted through inverse process and decompressed images were matched. [Result] The simulation results show that when compression ratio of the color image of rape crops was 11.972 3∶1, human can not distinguish the differences between the decompressed images and the source images with naked eyes; when ratio was as high as 53.565 6∶1, PSNR was still above 30 dD,encoding efficiency achieved over 0.78 and redundancy was less than 0.22. [Conclusion] The results indicate that the proposed color image compression technology can achieve higher compression ratio on the premise of good image quality. In addition, image encoding quality and decompressed images achieved better results, which fully met requirement of image storage and transmission in monitoring system of rape crop in the Qinling Mountains.
基金Project 60571049 supported by the National Natural Science Foundation of China
文摘By investigating the limitation of existing wavelet tree based image compression methods, we propose a novel wavelet fractal image compression method in this paper. Briefly, the initial errors are appointed given the different levels of importance accorded the frequency sublevel band wavelet coefficients. Higher frequency sublevel bands would lead to larger initial errors. As a result, the sizes of sublevel blocks and super blocks would be changed according to the initial errors. The matching sizes between sublevel blocks and super blocks would be changed according to the permitted errors and compression rates. Systematic analyses are performed and the experimental results demonstrate that the proposed method provides a satisfactory performance with a clearly increasing rate of compression and speed of encoding without reducing SNR and the quality of decoded images. Simulation results show that our method is superior to the traditional wavelet tree based methods of fractal image compression.
文摘Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm.
基金Project supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(Grant No.CityU123009)
文摘A chaos-based cryptosystem for fractal image coding is proposed. The Renyi chaotic map is employed to determine the order of processing the range blocks and to generate the keystream for masking the encoded sequence. Compared with the standard approach of fraetal image coding followed by the Advanced Encryption Standard, our scheme offers a higher sensitivity to both plaintext and ciphertext at a comparable operating efficiency. The keystream generated by the Renyi chaotic map passes the randomness tests set by the United States National Institute of Standards and Technology, and so the proposed scheme is sensitive to the key.
文摘Based on Jacquin's work. this paper presents an adaptive block-based fractal image coding scheme. Firstly. masking functions are used to classify range blocks and weight the mean Square error (MSE) of images. Secondly, an adaptive block partition scheme is introduced by developing the quadtree partition method. Thirdly. a piecewise uniform quantization strategy is appled to quantize the luminance shifting. Finally. experiment results are shown and compared with what reported by Jacquin and Lu to verify the validity of the methods addressed by the authors.
基金Project(61172184) supported by the National Natural Science Foundation of ChinaProject(200902482) supported by China Postdoctoral Science Foundation Specially Funded ProjectProject(12JJ6062) supported by the Natural Science Foundation of Hunan Province,China
文摘A blind digital image forensic method for detecting copy-paste forgery between JPEG images was proposed.Two copy-paste tampering scenarios were introduced at first:the tampered image was saved in an uncompressed format or in a JPEG compressed format.Then the proposed detection method was analyzed and simulated for all the cases of the two tampering scenarios.The tampered region is detected by computing the averaged sum of absolute difference(ASAD) images between the examined image and a resaved JPEG compressed image at different quality factors.The experimental results show the advantages of the proposed method:capability of detecting small and/or multiple tampered regions,simple computation,and hence fast speed in processing.
基金This project was supported by the National Natural Science Foundation of China (60532060)Hainan Education Bureau Research Project (Hjkj200602)Hainan Natural Science Foundation (80551).
文摘A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression.
基金Supported by the National Natural Science Foundation of China (No.60572100)by the Royal Society (U.K.) International Joint Projects 2006/R3-Cost Share with NSFC (No.60711130233)
文摘A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are firstly introduced into neural network in the proposed algorithm. Extensive experiments are conducted on standard testing images and the results show that the pro- posed method can improve the quality of the reconstructed images significantly.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152)the Superior University Doctor Subject Special Scientific Research Foundation of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province of China (Grant No. 20082165)
文摘This paper utilizes a spatial texture correlation and the intelligent classification algorithm (ICA) search strategy to speed up the encoding process and improve the bit rate for fractal image compression. Texture features is one of the most important properties for the representation of an image. Entropy and maximum entry from co-occurrence matrices are used for representing texture features in an image. For a range block, concerned domain blocks of neighbouring range blocks with similar texture features can be searched. In addition, domain blocks with similar texture features are searched in the ICA search process. Experiments show that in comparison with some typical methods, the proposed algorithm significantly speeds up the encoding process and achieves a higher compression ratio, with a slight diminution in the quality of the reconstructed image; in comparison with a spatial correlation scheme, the proposed scheme spends much less encoding time while the compression ratio and the quality of the reconstructed image are almost the same.
基金Supported by the National Natural Science Foundation of China (69983005)
文摘The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear morphological predictor follows the update adaptive lifting to result in fewer large wavelet coefficients near edges for reducing coding. The nonlinear adaptive wavelet transforms can also allow perfect reconstruction without any overhead cost. Experiment results are given to show lower entropy of the adaptive transformed images than those of the non-adaptive case and great applicable potentiality in lossless image compresslon.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173183, 60973152, and 60573172)the Special Scientific Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165)
文摘A new method using plane fitting to decide whether a domain block is similar enough to a given range block is proposed in this paper. First, three coefficients are computed for describing each range and domain block. Then, the best-matched one for every range block is obtained by analysing the relation between their coefficients. Experimental results show that the proposed method can shorten encoding time markedly, while the retrieved image quality is still acceptable. In the decoding step, a kind of simple line fitting on block boundaries is used to reduce blocking effects. At the same time, the proposed method can also achieve a high compression ratio.
基金funded by the University of Jeddah,Saudi Arabia,under Grant No.UJ-20-043-DR。
文摘This paper presents a novel method utilizing wavelets with particle swarm optimization(PSO)for medical image compression.Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing images using thresholding.It transfers images into subband details and approximations using a modified Haar wavelet(MHW),and then applies a threshold.PSO is applied for selecting a particle assigned to the threshold values for the subbands.Nine positions assigned to particles values are used to represent population.Every particle updates its position depending on the global best position(gbest)(for all details subband)and local best position(pbest)(for a subband).The fitness value is developed to terminate PSO when the difference between two local best(pbest)successors is smaller than a prescribe value.The experiments are applied on five different medical image types,i.e.,MRI,CT,and X-ray.Results show that the proposed algorithm can be more preferably to compress medical images than other existing wavelets techniques from peak signal to noise ratio(PSNR)and compression ratio(CR)points of views.
基金supported by the National Natural Science Foundationof China (60702012)the Scientific Research Foundation for the Re-turned Overseas Chinese Scholars, State Education Ministry
文摘To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize transform in spatial domain, the proposed algorithm applies transform in spectral domain. Set-partitioning-based approach is applied to reorganize DCT coefficients into waveletlike tree structure and extract the sign, refinement, and significance bitplanes. The extracted refinement bits are Gray encoded. Because of the dependency along the line dimension of hyperspectral images, low density paritycheck-(LDPC)-based Slepian-Wolf coder is adopted to implement the DSC strategy. Experimental results on airborne visible/infrared imaging spectrometer (AVIRIS) dataset show that the proposed paradigm achieves up to 6 dB improvement over DSC-based coders which apply transform in spatial domain, with significantly reduced computational complexity and memory storage.
文摘An edge oriented image sequence coding scheme is presented. On the basis of edge detecting, an image could be divided into the sensitized region and the smooth region. In this scheme, the architecture of sensitized region is approximated with linear type of segments. Then a rectangle belt is constructed for each segment. Finally, the gray value distribution in the region is fitted by normal forms polynomials. The model matching and motion analysis are also based on the architecture of sensitized region. For the smooth region we use the run length scanning and linear approximating. By means of normal forms polynomial fitting and motion prediction by matching, the images are compressed. It is shown through the simulations that the subjective quality of reconstructed picture is excellent at 0.0075 bit per pel.