As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and...As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi- threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.展开更多
Research for detecting or obtaining radionuclide by gamma energy spectrum data acquisition and process system is one of the key issues about intelligent measurement of gamma-ray spectrum. For this reason, a software a...Research for detecting or obtaining radionuclide by gamma energy spectrum data acquisition and process system is one of the key issues about intelligent measurement of gamma-ray spectrum. For this reason, a software and hardware implementation schematic design based on ARM ( Advanced RISC Machines) + DSP ( Digital Signal Processor) architecture for gamma energy spectrum data acquisition and processing system is proposed. The paper discusses in detail some key technologies such as communication interface design between microcontroller ARM and digital signal processor DSP,distribution scheduling under multi-task in the ARM-Linux,DSP handling procedures for multi-channel A / D high-speed sample. At the same time,because the traditional Gaussian fitting to determine the boundary of peak is not ideal,it puts forward a weighting factor of Gaussian function least squares fitting realize boundary determined. Finally gamma-spectrum data from sodium iodide NaI( TI) scintillation detector is tested and processed in the new system. The results show that gamma energy spectrum data acquisition and process system is perfect functionality, stable and convergence in unimodal. Compared with data from conventional energy spectrometers,the system can keep better energy resolution in a wide range of pulse pass rate.展开更多
A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profi...A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profiling sonar.The system was designed for seabed petroleum pipeline detection and orientation,and can receive echo signals and process the data in real time,refreshing the display 10 times per second.Every node of the chirp sonar connects with data processing nodes through TCP/IP. Merely by adding nodes,the system’s processing ability can be increased proportionately without changing the software.System debugging and experimental testing proved the system to be practical and stable.This design provides a new method for high speed active sonar.展开更多
The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of ...The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of the IoMT,particularly in the context of knowledge‐based learning systems.Smart healthcare systems leverage knowledge‐based learning to become more context‐aware,adaptable,and auditable while maintain-ing the ability to learn from historical data.In smart healthcare systems,devices capture images,such as X‐rays,Magnetic Resonance Imaging.The security and integrity of these images are crucial for the databases used in knowledge‐based learning systems to foster structured decision‐making and enhance the learning abilities of AI.Moreover,in knowledge‐driven systems,the storage and transmission of HD medical images exert a burden on the limited bandwidth of the communication channel,leading to data trans-mission delays.To address the security and latency concerns,this paper presents a lightweight medical image encryption scheme utilising bit‐plane decomposition and chaos theory.The results of the experiment yield entropy,energy,and correlation values of 7.999,0.0156,and 0.0001,respectively.This validates the effectiveness of the encryption system proposed in this paper,which offers high‐quality encryption,a large key space,key sensitivity,and resistance to statistical attacks.展开更多
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri...Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.展开更多
After a brief review of existing methods for fabric wetting and wicking measurement,a new numerical approach based on dynamic image acquisition and analysis was proposed to study the liquid wetting and wicking propert...After a brief review of existing methods for fabric wetting and wicking measurement,a new numerical approach based on dynamic image acquisition and analysis was proposed to study the liquid wetting and wicking properties of woven fabrics.A measuring system was first developed to record on-site the images of liquid ascending in fabrics for a certain period of time.The hardware and software platforms and the experimental methods were described,and the image processing and analysis as well as other related algorithms were discussed in detail.The liquid front curves and rising rates in wetting and wicking were eventually obtained towards different fabrics.From liquid wicking curves,relationship between liquid ascending height and liquid ascending time agrees well with the Washburn theory.The data comparison between the numerical measurement and the traditional test proves the reliability of the numerical results.展开更多
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper...The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.展开更多
Remotely sensed spectral data and images are acquired under significant additional effects accompanying their major formation process, which greatly determine measurement accuracy. In order to be used in subsequent qu...Remotely sensed spectral data and images are acquired under significant additional effects accompanying their major formation process, which greatly determine measurement accuracy. In order to be used in subsequent quantitative analysis and assessment, this data should be subject to preliminary processing aiming to improve its accuracy and credibility. The paper considers some major problems related with preliminary processing of remotely sensed spectral data and images. The major factors are analyzed, which affect the occurrence of data noise or uncertainties and the methods for reduction or removal thereof. Assessment is made of the extent to which available equipment and technologies may help reduce measurement errors.展开更多
In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illuminati...In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illumination Correction Model proposed by Markham and Irish and the Illumination and Atmospheric Correction Model developed by the Remote Sensing and GIS Laboratory of the Utah State University. Relative noise, correlation coefficient and slope value were used as the criteria for the evaluation and comparison, which were derived from pseudo-invarlant features identified from multitemporal Landsat image pairs of Xiamen (厦门) and Fuzhou (福州) areas, both located in the eastern Fujian (福建) Province of China. Compared with the unnormalized image, the radiometric differences between the normalized multitemporal images were significantly reduced when the seasons of multitemporal images were different. However, there was no significant difference between the normalized and unnorrealized images with a similar seasonal condition. Furthermore, the correction results of two algorithms are similar when the images are relatively clear with a uniform atmospheric condition. Therefore, the radiometric normalization procedures should be carried out if the multitemporal images have a significant seasonal difference.展开更多
A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, i...A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression.展开更多
Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process...Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.展开更多
In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis...In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis of medical images is essential for doctors,as manual investigation often leads to inter-observer variability.This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework.The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization(MIWPSO)and Fuzzy C-Means clustering(FCM)algorithms.Traditional FCM does not incorporate spatial neighborhood features,making it highly sensitive to noise,which significantly affects segmentation output.Our method incorporates a modified FCM that includes spatial functions in the fuzzy membership matrix to eliminate noise.The results demonstrate that the proposed FCM-MIWPSO method achieves highly precise and accurate medical image segmentation.Furthermore,segmented images are classified as benign or malignant using the Decision Tree-Based Temporal Association Rule(DT-TAR)Algorithm.Comparative analysis with existing state-of-the-art models indicates that the proposed FCM-MIWPSO segmentation technique achieves a remarkable accuracy of 98.42%on the dataset,highlighting its significant impact on improving diagnostic capabilities in medical imaging.展开更多
To detect the deformation of the tunnel structure based on image sensor networks is the advanced study and application of spatial sensor technology. For the vertical settlement of metro tunnel caused by internal and e...To detect the deformation of the tunnel structure based on image sensor networks is the advanced study and application of spatial sensor technology. For the vertical settlement of metro tunnel caused by internal and external stress after its long period operation, the overall scheme and measuring principle of tunnel deformation detection system is in- troduced. The image data acquisition and processing of detection target are achieved by the cooperative work of image sensor, ARM embedded system. RS485 communication achieves the data transmission between ARM memory and host computer. The database system in station platform analyses the detection data and obtains the deformation state of tunnel inner wall, which makes it possible to early-warn the tunnel deformation and take preventive measures in time.展开更多
The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small e...The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small ellipticity.However,one of the most significant challenges lies in ultra-long-distance data transmission,particularly for the Magnetic and Helioseismic Imager(MHI),which is the most important payload and generates the largest volume of data in SPO.In this paper,we propose a tailored lossless data compression method based on the measurement mode and characteristics of MHI data.The background out of the solar disk is removed to decrease the pixel number of an image under compression.Multiple predictive coding methods are combined to eliminate the redundancy utilizing the correlation(space,spectrum,and polarization)in data set,improving the compression ratio.Experimental results demonstrate that our method achieves an average compression ratio of 3.67.The compression time is also less than the general observation period.The method exhibits strong feasibility and can be easily adapted to MHI.展开更多
With the continuous development and expansion of automotive industry, car safety problems are widely concerned by most of us. In order to make it easier to adjust car′s real-time body posture, it is necessary to desi...With the continuous development and expansion of automotive industry, car safety problems are widely concerned by most of us. In order to make it easier to adjust car′s real-time body posture, it is necessary to design a real-time data acquisition system, thus reducing the number of casualties in normal driving. A brief account of the development status of data acquisition system at home and abroad, and the concept, principle,function of virtual instrument platform are given. The advantages and disadvantages of the data acquisitionsystem, based on LabVIEW in different methods of data acquisition, are analyzed and compared, and put forward some improvements and optimization, so the real-time data acquisition system can meet the requirement of adjusting the state of the vehicle, improving real-time of data acquisition and processing. Finally, it indicates the development direction and prospect of data acquisition system based on LabVIEW.展开更多
Visual data mining is one of important approach of data mining techniques. Most of them are based on computer graphic techniques but few of them exploit image-processing techniques. This paper proposes an image proces...Visual data mining is one of important approach of data mining techniques. Most of them are based on computer graphic techniques but few of them exploit image-processing techniques. This paper proposes an image processing method, named RNAM (resemble neighborhood averaging method), to facilitate visual data mining, which is used to post-process the data mining result-image and help users to discover significant features and useful patterns effectively. The experiments show that the method is intuitive, easily-understanding and effectiveness. It provides a new approach for visual data mining.展开更多
This paper introduces MapReduce as a distributed data processing model using open source Hadoop framework for manipulating large volume of data. The huge volume of data in the modern world, particularly multimedia dat...This paper introduces MapReduce as a distributed data processing model using open source Hadoop framework for manipulating large volume of data. The huge volume of data in the modern world, particularly multimedia data, creates new requirements for processing and storage. As an open source distributed computational framework, Hadoop allows for processing large amounts of images on an infinite set of computing nodes by providing necessary infrastructures. This paper introduces this framework, current works and its advantages and disadvantages.展开更多
Distributed/parallel-processing system like sun grid engine(SGE) that utilizes multiple nodes/cores is proposed for the faster processing of large sized satellite image data. After verification, distributed process en...Distributed/parallel-processing system like sun grid engine(SGE) that utilizes multiple nodes/cores is proposed for the faster processing of large sized satellite image data. After verification, distributed process environment for pre-processing performance can be improved by up to 560.65% from single processing system. Through this, analysis performance in various fields can be improved, and moreover, near-real time service can be achieved in near future.展开更多
In this paper, the advantages and disadvantages of the existing ultrasonic image management system are analyzed, and also a multi-functional color Doppler ultrasound image-text management system is researched and deve...In this paper, the advantages and disadvantages of the existing ultrasonic image management system are analyzed, and also a multi-functional color Doppler ultrasound image-text management system is researched and developed in combination with the experience of color Doppler ultrasound doctors. With this system, the related operations such as color Doppler ultrasound images acquisition, processing, preservation, and medical records are implemented. In the design of the system, a professional acquisition card is used for implementing the acquisition of ordinary video signals. In the meantime, DICOM interface is designed using DICOM3.0 protocol for implementing multi-mode acquisition.展开更多
基金the NBI team and the partial support of National Natural Science Foundation of China (No. 61363019)National Natural Science Foundation of Qinghai Province (No. 2014-ZJ-718)
文摘As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi- threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.
基金Sponsored by the Natural Science Fundation of Jiangxi Province(Grant No.20114BAB211026 and No.20122BA-B201028)Open Science Fund from Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense,East China Institute of Technology(Grant No.2010RGET11)
文摘Research for detecting or obtaining radionuclide by gamma energy spectrum data acquisition and process system is one of the key issues about intelligent measurement of gamma-ray spectrum. For this reason, a software and hardware implementation schematic design based on ARM ( Advanced RISC Machines) + DSP ( Digital Signal Processor) architecture for gamma energy spectrum data acquisition and processing system is proposed. The paper discusses in detail some key technologies such as communication interface design between microcontroller ARM and digital signal processor DSP,distribution scheduling under multi-task in the ARM-Linux,DSP handling procedures for multi-channel A / D high-speed sample. At the same time,because the traditional Gaussian fitting to determine the boundary of peak is not ideal,it puts forward a weighting factor of Gaussian function least squares fitting realize boundary determined. Finally gamma-spectrum data from sodium iodide NaI( TI) scintillation detector is tested and processed in the new system. The results show that gamma energy spectrum data acquisition and process system is perfect functionality, stable and convergence in unimodal. Compared with data from conventional energy spectrometers,the system can keep better energy resolution in a wide range of pulse pass rate.
基金the National High Technology Project of China Foundation under Grant No.2002AA602230-1
文摘A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profiling sonar.The system was designed for seabed petroleum pipeline detection and orientation,and can receive echo signals and process the data in real time,refreshing the display 10 times per second.Every node of the chirp sonar connects with data processing nodes through TCP/IP. Merely by adding nodes,the system’s processing ability can be increased proportionately without changing the software.System debugging and experimental testing proved the system to be practical and stable.This design provides a new method for high speed active sonar.
文摘The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of the IoMT,particularly in the context of knowledge‐based learning systems.Smart healthcare systems leverage knowledge‐based learning to become more context‐aware,adaptable,and auditable while maintain-ing the ability to learn from historical data.In smart healthcare systems,devices capture images,such as X‐rays,Magnetic Resonance Imaging.The security and integrity of these images are crucial for the databases used in knowledge‐based learning systems to foster structured decision‐making and enhance the learning abilities of AI.Moreover,in knowledge‐driven systems,the storage and transmission of HD medical images exert a burden on the limited bandwidth of the communication channel,leading to data trans-mission delays.To address the security and latency concerns,this paper presents a lightweight medical image encryption scheme utilising bit‐plane decomposition and chaos theory.The results of the experiment yield entropy,energy,and correlation values of 7.999,0.0156,and 0.0001,respectively.This validates the effectiveness of the encryption system proposed in this paper,which offers high‐quality encryption,a large key space,key sensitivity,and resistance to statistical attacks.
基金funded by the National Natural Science Foundation of China(NSFC,Nos.12373086 and 12303082)CAS“Light of West China”Program+2 种基金Yunnan Revitalization Talent Support Program in Yunnan ProvinceNational Key R&D Program of ChinaGravitational Wave Detection Project No.2022YFC2203800。
文摘Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.
基金the Research Funds for the Central Universities,China(No.1302-1)The Project Sponsored SRF for ROCS,SEM,China
文摘After a brief review of existing methods for fabric wetting and wicking measurement,a new numerical approach based on dynamic image acquisition and analysis was proposed to study the liquid wetting and wicking properties of woven fabrics.A measuring system was first developed to record on-site the images of liquid ascending in fabrics for a certain period of time.The hardware and software platforms and the experimental methods were described,and the image processing and analysis as well as other related algorithms were discussed in detail.The liquid front curves and rising rates in wetting and wicking were eventually obtained towards different fabrics.From liquid wicking curves,relationship between liquid ascending height and liquid ascending time agrees well with the Washburn theory.The data comparison between the numerical measurement and the traditional test proves the reliability of the numerical results.
文摘The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.
文摘Remotely sensed spectral data and images are acquired under significant additional effects accompanying their major formation process, which greatly determine measurement accuracy. In order to be used in subsequent quantitative analysis and assessment, this data should be subject to preliminary processing aiming to improve its accuracy and credibility. The paper considers some major problems related with preliminary processing of remotely sensed spectral data and images. The major factors are analyzed, which affect the occurrence of data noise or uncertainties and the methods for reduction or removal thereof. Assessment is made of the extent to which available equipment and technologies may help reduce measurement errors.
基金This paper is supported by the National Natural Science Foundation ofChina (No .40371107) .
文摘In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illumination Correction Model proposed by Markham and Irish and the Illumination and Atmospheric Correction Model developed by the Remote Sensing and GIS Laboratory of the Utah State University. Relative noise, correlation coefficient and slope value were used as the criteria for the evaluation and comparison, which were derived from pseudo-invarlant features identified from multitemporal Landsat image pairs of Xiamen (厦门) and Fuzhou (福州) areas, both located in the eastern Fujian (福建) Province of China. Compared with the unnormalized image, the radiometric differences between the normalized multitemporal images were significantly reduced when the seasons of multitemporal images were different. However, there was no significant difference between the normalized and unnorrealized images with a similar seasonal condition. Furthermore, the correction results of two algorithms are similar when the images are relatively clear with a uniform atmospheric condition. Therefore, the radiometric normalization procedures should be carried out if the multitemporal images have a significant seasonal difference.
基金This project was supported by the National Natural Science Foundation of China (60532060)Hainan Education Bureau Research Project (Hjkj200602)Hainan Natural Science Foundation (80551).
文摘A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression.
基金Project(2017YFC1405600)supported by the National Key R&D Program of ChinaProject(18JK05032)supported by the Scientific Research Project of Education Department of Shaanxi Province,China。
文摘Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified.
基金Scientific Research Deanship has funded this project at the University of Ha’il–Saudi Arabia Ha’il–Saudi Arabia through project number RG-21104.
文摘In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis of medical images is essential for doctors,as manual investigation often leads to inter-observer variability.This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework.The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization(MIWPSO)and Fuzzy C-Means clustering(FCM)algorithms.Traditional FCM does not incorporate spatial neighborhood features,making it highly sensitive to noise,which significantly affects segmentation output.Our method incorporates a modified FCM that includes spatial functions in the fuzzy membership matrix to eliminate noise.The results demonstrate that the proposed FCM-MIWPSO method achieves highly precise and accurate medical image segmentation.Furthermore,segmented images are classified as benign or malignant using the Decision Tree-Based Temporal Association Rule(DT-TAR)Algorithm.Comparative analysis with existing state-of-the-art models indicates that the proposed FCM-MIWPSO segmentation technique achieves a remarkable accuracy of 98.42%on the dataset,highlighting its significant impact on improving diagnostic capabilities in medical imaging.
基金Science and Technology Commission of Shanghai Municipality(No.08201202103)
文摘To detect the deformation of the tunnel structure based on image sensor networks is the advanced study and application of spatial sensor technology. For the vertical settlement of metro tunnel caused by internal and external stress after its long period operation, the overall scheme and measuring principle of tunnel deformation detection system is in- troduced. The image data acquisition and processing of detection target are achieved by the cooperative work of image sensor, ARM embedded system. RS485 communication achieves the data transmission between ARM memory and host computer. The database system in station platform analyses the detection data and obtains the deformation state of tunnel inner wall, which makes it possible to early-warn the tunnel deformation and take preventive measures in time.
基金supported by the National Key R&D Program of China(grant No.2022YFF0503800)by the National Natural Science Foundation of China(NSFC)(grant No.11427901)+1 种基金by the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS-SPP)(grant No.XDA15320102)by the Youth Innovation Promotion Association(CAS No.2022057)。
文摘The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small ellipticity.However,one of the most significant challenges lies in ultra-long-distance data transmission,particularly for the Magnetic and Helioseismic Imager(MHI),which is the most important payload and generates the largest volume of data in SPO.In this paper,we propose a tailored lossless data compression method based on the measurement mode and characteristics of MHI data.The background out of the solar disk is removed to decrease the pixel number of an image under compression.Multiple predictive coding methods are combined to eliminate the redundancy utilizing the correlation(space,spectrum,and polarization)in data set,improving the compression ratio.Experimental results demonstrate that our method achieves an average compression ratio of 3.67.The compression time is also less than the general observation period.The method exhibits strong feasibility and can be easily adapted to MHI.
基金supported by Key Scientific Research Project of Henan Province(17A580003)Key Scientific and Technological Project of Henan Province(172102210022)Henan Polytechnic University Education Teaching Reform Research Projects(2015JG034)
文摘With the continuous development and expansion of automotive industry, car safety problems are widely concerned by most of us. In order to make it easier to adjust car′s real-time body posture, it is necessary to design a real-time data acquisition system, thus reducing the number of casualties in normal driving. A brief account of the development status of data acquisition system at home and abroad, and the concept, principle,function of virtual instrument platform are given. The advantages and disadvantages of the data acquisitionsystem, based on LabVIEW in different methods of data acquisition, are analyzed and compared, and put forward some improvements and optimization, so the real-time data acquisition system can meet the requirement of adjusting the state of the vehicle, improving real-time of data acquisition and processing. Finally, it indicates the development direction and prospect of data acquisition system based on LabVIEW.
基金Supported by the National Natural Science Foun-dation of China (60173051) ,the Teaching and Research Award Pro-gramfor Outstanding Young Teachers in Higher Education Institu-tions of Ministry of Education of China ,and Liaoning Province HigherEducation Research Foundation (20040206)
文摘Visual data mining is one of important approach of data mining techniques. Most of them are based on computer graphic techniques but few of them exploit image-processing techniques. This paper proposes an image processing method, named RNAM (resemble neighborhood averaging method), to facilitate visual data mining, which is used to post-process the data mining result-image and help users to discover significant features and useful patterns effectively. The experiments show that the method is intuitive, easily-understanding and effectiveness. It provides a new approach for visual data mining.
文摘This paper introduces MapReduce as a distributed data processing model using open source Hadoop framework for manipulating large volume of data. The huge volume of data in the modern world, particularly multimedia data, creates new requirements for processing and storage. As an open source distributed computational framework, Hadoop allows for processing large amounts of images on an infinite set of computing nodes by providing necessary infrastructures. This paper introduces this framework, current works and its advantages and disadvantages.
基金supported by the Sharing and Diffusion of National R&D Outcome funded by the Korea Institute of Science and Technology Information
文摘Distributed/parallel-processing system like sun grid engine(SGE) that utilizes multiple nodes/cores is proposed for the faster processing of large sized satellite image data. After verification, distributed process environment for pre-processing performance can be improved by up to 560.65% from single processing system. Through this, analysis performance in various fields can be improved, and moreover, near-real time service can be achieved in near future.
文摘In this paper, the advantages and disadvantages of the existing ultrasonic image management system are analyzed, and also a multi-functional color Doppler ultrasound image-text management system is researched and developed in combination with the experience of color Doppler ultrasound doctors. With this system, the related operations such as color Doppler ultrasound images acquisition, processing, preservation, and medical records are implemented. In the design of the system, a professional acquisition card is used for implementing the acquisition of ordinary video signals. In the meantime, DICOM interface is designed using DICOM3.0 protocol for implementing multi-mode acquisition.