In recent times,an image enhancement approach,which learns the global transformation function using deep neural networks,has gained attention.However,many existing methods based on this approach have a limitation:thei...In recent times,an image enhancement approach,which learns the global transformation function using deep neural networks,has gained attention.However,many existing methods based on this approach have a limitation:their transformation functions are too simple to imitate complex colour transformations between low-quality images and manually retouched high-quality images.In order to address this limitation,a simple yet effective approach for image enhancement is proposed.The proposed algorithm based on the channel-wise intensity transformation is designed.However,this transformation is applied to the learnt embedding space instead of specific colour spaces and then return enhanced features to colours.To this end,the authors define the continuous intensity transformation(CIT)to describe the mapping between input and output intensities on the embedding space.Then,the enhancement network is developed,which produces multi-scale feature maps from input images,derives the set of transformation functions,and performs the CIT to obtain enhanced images.Extensive experiments on the MIT-Adobe 5K dataset demonstrate that the authors’approach improves the performance of conventional intensity transforms on colour space metrics.Specifically,the authors achieved a 3.8%improvement in peak signal-to-noise ratio,a 1.8%improvement in structual similarity index measure,and a 27.5%improvement in learned perceptual image patch similarity.Also,the authors’algorithm outperforms state-of-the-art alternatives on three image enhancement datasets:MIT-Adobe 5K,Low-Light,and Google HDRþ.展开更多
Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color...Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color correction and detail restoration. However,the existing enhancement algorithms cannot achieve the desired results. In order to solve the above problems, this paper proposes a multi-stream feature fusion network. First, an underwater image is preprocessed to obtain potential information from the illumination stream, color stream and structure stream by histogram equalization with contrast limitation, gamma correction and white balance, respectively. Next, these three streams and the original raw stream are sent to the residual blocks to extract the features. The features will be subsequently fused. It can enhance feature representation in underwater images. In the meantime, a composite loss function including three terms is used to ensure the quality of the enhanced image from the three aspects of color balance, structure preservation and image smoothness. Therefore, the enhanced image is more in line with human visual perception.Finally, the effectiveness of the proposed method is verified by comparison experiments with many stateof-the-art underwater image enhancement algorithms. Experimental results show that the proposed method provides superior results over them in terms of MSE,PSNR, SSIM, UIQM and UCIQE, and the enhanced images are more similar to their ground truth images.展开更多
Degradation under challenging conditions such as rain, haze, and low light not only diminishes content visibility, but also results in additional degradation side effects, including detail occlusion and color distorti...Degradation under challenging conditions such as rain, haze, and low light not only diminishes content visibility, but also results in additional degradation side effects, including detail occlusion and color distortion. However, current technologies have barely explored the correlation between perturbation removal and background restoration, consequently struggling to generate high-naturalness content in challenging scenarios. In this paper, we rethink the image enhancement task from the perspective of joint optimization: Perturbation removal and texture reconstruction. To this end, we advise an efficient yet effective image enhancement model, termed the perturbation-guided texture reconstruction network(PerTeRNet). It contains two subnetworks designed for the perturbation elimination and texture reconstruction tasks, respectively. To facilitate texture recovery,we develop a novel perturbation-guided texture enhancement module(PerTEM) to connect these two tasks, where informative background features are extracted from the input with the guidance of predicted perturbation priors. To alleviate the learning burden and computational cost, we suggest performing perturbation removal in a sub-space and exploiting super-resolution to infer high-frequency background details. Our PerTeRNet has demonstrated significant superiority over typical methods in both quantitative and qualitative measures, as evidenced by extensive experimental results on popular image enhancement and joint detection tasks. The source code is available at https://github.com/kuijiang94/PerTeRNet.展开更多
Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image qual...Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image quality of handheld ultrasound devices is not always satisfactory due to the limited equipment size,which hinders accurate diagnoses by doctors.At the same time,paired ultrasound images are difficult to obtain from the clinic because imaging process is complicated.Therefore,we propose a modified cycle generative adversarial network(cycleGAN) for ultrasound image enhancement from multiple organs via unpaired pre-training.We introduce an ultrasound image pre-training method that does not require paired images,alleviating the requirement for large-scale paired datasets.We also propose an enhanced block with different structures in the pre-training and fine-tuning phases,which can help achieve the goals of different training phases.To improve the robustness of the model,we add Gaussian noise to the training images as data augmentation.Our approach is effective in obtaining the best quantitative evaluation results using a small number of parameters and less training costs to improve the quality of handheld ultrasound devices.展开更多
Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ign...Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ignored that the R,G and B channels of underwater degraded images present varied degrees of degradation,due to the selective absorption for the light.To address this issue,we propose an unsupervised multi-expert learning model by considering the enhancement of each color channel.Specifically,an unsupervised architecture based on generative adversarial network is employed to alleviate the need for paired underwater images.Based on this,we design a generator,including a multi-expert encoder,a feature fusion module and a feature fusion-guided decoder,to generate the clear underwater image.Accordingly,a multi-expert discriminator is proposed to verify the authenticity of the R,G and B channels,respectively.In addition,content perceptual loss and edge loss are introduced into the loss function to further improve the content and details of the enhanced images.Extensive experiments on public datasets demonstrate that our method achieves more pleasing results in vision quality.Various metrics(PSNR,SSIM,UIQM and UCIQE) evaluated on our enhanced images have been improved obviously.展开更多
Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but ...Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but the collection of suitable normal-light images is difficult.In contrast,a self-supervised method breaks free from the reliance on normal-light data,resulting in more convenience and better generalization.Existing self-supervised methods primarily focus on illumination adjustment and design pixel-based adjustment methods,resulting in remnants of other degradations,uneven brightness and artifacts.In response,this paper proposes a self-supervised enhancement method,termed as SLIE.It can handle multiple degradations including illumination attenuation,noise pollution,and color shift,all in a self-supervised manner.Illumination attenuation is estimated based on physical principles and local neighborhood information.The removal and correction of noise and color shift removal are solely realized with noisy images and images with color shifts.Finally,the comprehensive and fully self-supervised approach can achieve better adaptability and generalization.It is applicable to various low light conditions,and can reproduce the original color of scenes in natural light.Extensive experiments conducted on four public datasets demonstrate the superiority of SLIE to thirteen state-of-the-art methods.Our code is available at https://github.com/hanna-xu/SLIE.展开更多
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
Finger vein extraction and recognition hold significance in various applications due to the unique and reliable nature of finger vein patterns. While recently finger vein recognition has gained popularity, there are s...Finger vein extraction and recognition hold significance in various applications due to the unique and reliable nature of finger vein patterns. While recently finger vein recognition has gained popularity, there are still challenges associated with extracting and processing finger vein patterns related to image quality, positioning and alignment, skin conditions, security concerns and processing techniques applied. In this paper, a method for robust segmentation of line patterns in strongly blurred images is presented and evaluated in vessel network extraction from infrared images of human fingers. In a four-step process: local normalization of brightness, image enhancement, segmentation and cleaning were involved. A novel image enhancement method was used to re-establish the line patterns from the brightness sum of the independent close-form solutions of the adopted optimization criterion derived in small windows. In the proposed method, the computational resources were reduced significantly compared to the solution derived when the whole image was processed. In the enhanced image, where the concave structures have been sufficiently emphasized, accurate detection of line patterns was obtained by local entropy thresholding. Typical segmentation errors appearing in the binary image were removed using morphological dilation with a line structuring element and morphological filtering with a majority filter to eliminate isolated blobs. The proposed method performs accurate detection of the vessel network in human finger infrared images, as the experimental results show, applied both in real and artificial images and can readily be applied in many image enhancement and segmentation applications.展开更多
In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization tec...In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.展开更多
In ophthalmology,the quality of fundus images is critical for accurate diagnosis,both in clinical practice and in artificial intelligence(AI)-assisted diagnostics.Despite the broad view provided by ultrawide-field(UWF...In ophthalmology,the quality of fundus images is critical for accurate diagnosis,both in clinical practice and in artificial intelligence(AI)-assisted diagnostics.Despite the broad view provided by ultrawide-field(UWF)imaging,pseudocolor images may conceal critical lesions necessary for precise diagnosis.To address this,we introduce UWF-Net,a sophisticated image enhancement algorithm that takes disease characteristics into consideration.Using the Fudan University ultra-wide-field image(FDUWI)dataset,which includes 11294 Optos pseudocolor and 2415 Zeiss true-color UWF images,each of which is rigorously annotated,UWF-Net combines global style modeling with feature-level lesion enhancement.Pathological consistency loss is also applied to maintain fundus feature integrity,significantly improving image quality.Quantitative and qualitative evaluations demonstrated that UWF-Net outperforms existing methods such as contrast limited adaptive histogram equalization(CLAHE)and structure and illumination constrained generative adversarial network(StillGAN),delivering superior retinal image quality,higher quality scores,and preserved feature details after enhancement.In disease classification tasks,images enhanced by UWF-Net showed notable improvements when processed with existing classification systems over those enhanced by StillGAN,demonstrating a 4.62%increase in sensitivity(SEN)and a 3.97%increase in accuracy(ACC).In a multicenter clinical setting,UWF-Net-enhanced images were preferred by ophthalmologic technicians and doctors,and yielded a significant reduction in diagnostic time((13.17±8.40)s for UWF-Net enhanced images vs(19.54±12.40)s for original images)and an increase in diagnostic accuracy(87.71%for UWF-Net enhanced images vs 80.40%for original images).Our research verifies that UWF-Net markedly improves the quality of UWF imaging,facilitating better clinical outcomes and more reliable AI-assisted disease classification.The clinical integration of UWF-Net holds great promise for enhancing diagnostic processes and patient care in ophthalmology.展开更多
Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for ga...Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for gastrointestinal disease identification in the clinical setting.A randomized controlled trial demonstrated improvements in the colorectal adenoma detection rate(ADR)and the mean number of adenomas per procedure(MAP)of TXI compared with those of white-light imaging(WLI)observation(58.7%vs 42.7%,adjusted relative risk 1.35,95%CI:1.17-1.56;1.36 vs 0.89,adjusted incident risk ratio 1.48,95%CI:1.22-1.80,respectively).A cross-over study also showed that the colorectal MAP and ADR in TXI were higher than those in WLI(1.5 vs 1.0,adjusted odds ratio 1.4,95%CI:1.2-1.6;58.2%vs 46.8%,1.5,1.0-2.3,respectively).A randomized controlled trial demonstrated non-inferiority of TXI to narrow-band imaging in the colorectal mean number of adenomas and sessile serrated lesions per procedure(0.29 vs 0.30,difference for non-inferiority-0.01,95%CI:-0.10 to 0.08).A cohort study found that scoring for ulcerative colitis severity using TXI could predict relapse of ulcerative colitis.A cross-sectional study found that TXI improved the gastric cancer detection rate compared to WLI(0.71%vs 0.29%).A cross-sectional study revealed that the sensitivity and accuracy for active Helicobacter pylori gastritis in TXI were higher than those of WLI(69.2%vs 52.5%and 85.3%vs 78.7%,res-pectively).In conclusion,TXI can improve gastrointestinal lesion detection and qualitative diagnosis.Therefore,further studies on the efficacy of TXI in clinical practice are required.展开更多
Determining whether sevoflurane sedation in children leads to“pseudo”prominent leptomeningeal contrast enhancement(pLMCE)on 3 Tesla magnetic resonance imaging will help reduce overdiagnosis by radiologists and clari...Determining whether sevoflurane sedation in children leads to“pseudo”prominent leptomeningeal contrast enhancement(pLMCE)on 3 Tesla magnetic resonance imaging will help reduce overdiagnosis by radiologists and clarify the pathophysiological changes of pLMCE.展开更多
To address the issue of deteriorated PCB image quality in the quality inspection process due to insufficient or uneven lighting, we proposed an image enhancement fusion algorithm based on different color spaces. First...To address the issue of deteriorated PCB image quality in the quality inspection process due to insufficient or uneven lighting, we proposed an image enhancement fusion algorithm based on different color spaces. Firstly, an improved MSRCR method was employed for brightness enhancement of the original image. Next, the color space of the original image was transformed from RGB to HSV, followed by processing the S-channel image using bilateral filtering and contrast stretching algorithms. The V-channel image was subjected to brightness enhancement using adaptive Gamma and CLAHE algorithms. Subsequently, the processed image was transformed back to the RGB color space from HSV. Finally, the images processed by the two algorithms were fused to create a new RGB image, and color restoration was performed on the fused image. Comparative experiments with other methods indicated that the contrast of the image was optimized, texture features were more abundantly preserved, brightness levels were significantly improved, and color distortion was prevented effectively, thus enhancing the quality of low-lit PCB images.展开更多
Underwater imaging posts a challenge due to the degradation by the absorption and scattering occurred during light propagation as well as poor lighting conditions in water medium Although image filtering techniques ar...Underwater imaging posts a challenge due to the degradation by the absorption and scattering occurred during light propagation as well as poor lighting conditions in water medium Although image filtering techniques are utilized to improve image quality effectively, problems of the distortion of image details and the bias of color correction still exist in output images due to the complexity of image texture distribution. This paper proposes a new underwater image enhancement method based on image struc- tural decomposition. By introducing a curvature factor into the Mumford_Shah_G decomposition algorithm, image details and struc- ture components are better preserved without the gradient effect. Thus, histogram equalization and Retinex algorithms are applied in the decomposed structure component for global image enhancement and non-uniform brightness correction for gray level and the color images, then the optical absorption spectrum in water medium is incorporate to improve the color correction. Finally, the en- hauced structure and preserved detail component are re.composed to generate the output. Experiments with real underwater images verify the image improvement by the proposed method in image contrast, brightness and color fidelity.展开更多
Due to the special characteristics of light in water,the information of the red channel is seriously attenuated in collected image.This causes other colors to dominate the image.This paper proposes an underwater image...Due to the special characteristics of light in water,the information of the red channel is seriously attenuated in collected image.This causes other colors to dominate the image.This paper proposes an underwater image enhancement algorithm based on red channel weighted compensation and gamma correction model.Firstly,by analyzing the attenuation characteristics of RGB channels,the intensity and the edge information of red channel are compensated by weighting the attenuation coefficient ratio between different channels to correct the chromaticity.Then the gamma correction model is employed to stretch the intensity range to enhance the contrast which makes the image look clearer.The experimental results show that the proposed algorithm can correct the color cast effect and improve the contrast by nearly 2 times for the underwater images with too much red component attenuation.展开更多
Abstract: Based on digital signal processor(DSP) and field programmable gate array(FPGA) techniques, the architecture of super large view field(SLVF) panoramic night vision image processing hardware platform wa...Abstract: Based on digital signal processor(DSP) and field programmable gate array(FPGA) techniques, the architecture of super large view field(SLVF) panoramic night vision image processing hardware platform was established. The panoramic unwrapping and correcting algorithm, up to a full 360°, based on coordinate rotation digital computer (CORDIC) and night vision image enhancement algorithm, based on histogram equalization theory and edge detection theory, was presented in this paper, with the purpose of processing night vision dynamic panoramic annular image. The annular image can be unwrapped and corrected to conventional rectangular panorama by the panoramic image processing algorithm, which uses the pipelined CORDIC configuration to realize a trigonometric function generator with high speed and high precision. Histogram equalization algorithm can perfectly enhance the contrast of the night vision image. Edge detection algorithm can be propitious to find and detect small dim dynamic targets in night vision circumstances. After abundant experiment, the al- gorithm for panoramic image processing and night vision image enhancement is successfully implemented in FPGA and DSP. The panoramic night vision image system is a compact device, with no external rotating parts. And the system can reliably and dynamically detect 360* SLVF panoramic night vision image.展开更多
In this paper, an interactive image enhancement (HE) technique based on fuzzy relaxation is presented, which allows the user to select different intensity levels for enhancement and intermit the enhancement process ...In this paper, an interactive image enhancement (HE) technique based on fuzzy relaxation is presented, which allows the user to select different intensity levels for enhancement and intermit the enhancement process according to his/her preference in applications. First, based on an analysis of the convergence of a fuzzy relaxation algorithm for image contrast enhancement, an improved version of this algorithm, which is called FuzzIIE Method 1, is suggested by deriving a relationship between the convergence regions and the parameters in the transformations defined in the algorithm. Then a method called FuzzIIE Method 2 is introduced by using a different fuzzy relaxation function, in which there is no need to re-select the parameter values for interactive image enhancement. Experimental results are presented demonstrating the enhancement capabilities of the proposed methods under different conditions.展开更多
To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement al...To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement algorithm. This algorithm introduces fuzzy entropy, makes full use of neighborhood information, fuzzy information and human visual characteristics.To enhance an image, this paper first carries out the reasonable fuzzy-3 partition of its histogram into the dark region, intermediate region and bright region. It then extracts the statistical characteristics of the three regions and adaptively selects the parameter αaccording to the statistical characteristics of the image’s gray-scale values. It also adds a useful nonlinear transform, thus increasing the ubiquity of the algorithm. Finally, the causes for the gray-scale value overcorrection that occurs in the traditional image enhancement algorithms are analyzed and their solutions are proposed.The simulation results show that our image enhancement algorithm can effectively suppress the noise of an image, enhance its contrast and visual effect, sharpen its edge and adjust its dynamic range.展开更多
Froth image could strongly indicate the production status in mineral flotation process.Considering low contrast and sensitivity to noises and illumination of froth images in flotation cells,an improved image enhanceme...Froth image could strongly indicate the production status in mineral flotation process.Considering low contrast and sensitivity to noises and illumination of froth images in flotation cells,an improved image enhancement algorithm based on nonsubsampled contourlet transform (NSCT) and multiscale Retinex algorithm has been proposed.Nonsubsampled contourlet transform was firstly adopted to decompose the flotation froth images,ensure signals invariance and avoid the blurring edge.Secondly,a multiscale Retinex algorithm was used to enhance the lower frequency image and improve the brightness uniformity.Adaptive classification method based on Bayes atrophy threshold was proposed to eliminate noise,preserve strong edges,and enhance weak edges of band-pass sub-band images.Experiment shows that the proposed method could enhance the edge,contour,details and curb noise,and improve visual effects.Under-segmentation caused by noise and blurring edge has been solved,which lays a foundation for extracting foamy morphological flotation froth and analyzing grade.展开更多
In this paper,we present a tensor least square based model for sand/sandstorm removal in images.The main contributions of this paper are as follows.First,an important intrinsic natural feature of outdoor scenes free o...In this paper,we present a tensor least square based model for sand/sandstorm removal in images.The main contributions of this paper are as follows.First,an important intrinsic natural feature of outdoor scenes free of sand/sandstorm is found that the outlines in RGB channels are somewise similar,which discloses the physical validation using the tensor instead of the matrix.Second,a tensor least square optimization model is presented for the decomposition of edge-preserving base layers and details.This model not only decomposes the color image(taken as an inseparable indivisibility)in X,Y directions,but also in Z direction,which meets the statistical feature of natural scenes and can physically disclose the intrinsic color information.The model’s advantages are twofold:one is the decomposition of edgepreserving base layers and details that can be employed for contrast enhancement without artificial halos,and the other one is the color driving ability that makes the enhanced images as close to natural images as possible via the inherent color structure.Thirdly,the tensor least square optimization model based image enhancement scheme is discussed for the sandstorm weather images.Finally,the experiments and comparisons with the stateof-the-art methods on real degraded images under sandstorm weather are shown to verify our method’s efficiency.展开更多
基金National Research Foundation of Korea,Grant/Award Numbers:2022R1I1A3069113,RS-2023-00221365Electronics and Telecommunications Research Institute,Grant/Award Number:2014-3-00123。
文摘In recent times,an image enhancement approach,which learns the global transformation function using deep neural networks,has gained attention.However,many existing methods based on this approach have a limitation:their transformation functions are too simple to imitate complex colour transformations between low-quality images and manually retouched high-quality images.In order to address this limitation,a simple yet effective approach for image enhancement is proposed.The proposed algorithm based on the channel-wise intensity transformation is designed.However,this transformation is applied to the learnt embedding space instead of specific colour spaces and then return enhanced features to colours.To this end,the authors define the continuous intensity transformation(CIT)to describe the mapping between input and output intensities on the embedding space.Then,the enhancement network is developed,which produces multi-scale feature maps from input images,derives the set of transformation functions,and performs the CIT to obtain enhanced images.Extensive experiments on the MIT-Adobe 5K dataset demonstrate that the authors’approach improves the performance of conventional intensity transforms on colour space metrics.Specifically,the authors achieved a 3.8%improvement in peak signal-to-noise ratio,a 1.8%improvement in structual similarity index measure,and a 27.5%improvement in learned perceptual image patch similarity.Also,the authors’algorithm outperforms state-of-the-art alternatives on three image enhancement datasets:MIT-Adobe 5K,Low-Light,and Google HDRþ.
基金supported by the national key research and development program (No.2020YFB1806608)Jiangsu natural science foundation for distinguished young scholars (No.BK20220054)。
文摘Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color correction and detail restoration. However,the existing enhancement algorithms cannot achieve the desired results. In order to solve the above problems, this paper proposes a multi-stream feature fusion network. First, an underwater image is preprocessed to obtain potential information from the illumination stream, color stream and structure stream by histogram equalization with contrast limitation, gamma correction and white balance, respectively. Next, these three streams and the original raw stream are sent to the residual blocks to extract the features. The features will be subsequently fused. It can enhance feature representation in underwater images. In the meantime, a composite loss function including three terms is used to ensure the quality of the enhanced image from the three aspects of color balance, structure preservation and image smoothness. Therefore, the enhanced image is more in line with human visual perception.Finally, the effectiveness of the proposed method is verified by comparison experiments with many stateof-the-art underwater image enhancement algorithms. Experimental results show that the proposed method provides superior results over them in terms of MSE,PSNR, SSIM, UIQM and UCIQE, and the enhanced images are more similar to their ground truth images.
基金supported by the National Natural Science Foundation of China (U23B2009, 62376201, 423B2104)Open Foundation (ZNXX2023MSO2, HBIR202311)。
文摘Degradation under challenging conditions such as rain, haze, and low light not only diminishes content visibility, but also results in additional degradation side effects, including detail occlusion and color distortion. However, current technologies have barely explored the correlation between perturbation removal and background restoration, consequently struggling to generate high-naturalness content in challenging scenarios. In this paper, we rethink the image enhancement task from the perspective of joint optimization: Perturbation removal and texture reconstruction. To this end, we advise an efficient yet effective image enhancement model, termed the perturbation-guided texture reconstruction network(PerTeRNet). It contains two subnetworks designed for the perturbation elimination and texture reconstruction tasks, respectively. To facilitate texture recovery,we develop a novel perturbation-guided texture enhancement module(PerTEM) to connect these two tasks, where informative background features are extracted from the input with the guidance of predicted perturbation priors. To alleviate the learning burden and computational cost, we suggest performing perturbation removal in a sub-space and exploiting super-resolution to infer high-frequency background details. Our PerTeRNet has demonstrated significant superiority over typical methods in both quantitative and qualitative measures, as evidenced by extensive experimental results on popular image enhancement and joint detection tasks. The source code is available at https://github.com/kuijiang94/PerTeRNet.
文摘Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image quality of handheld ultrasound devices is not always satisfactory due to the limited equipment size,which hinders accurate diagnoses by doctors.At the same time,paired ultrasound images are difficult to obtain from the clinic because imaging process is complicated.Therefore,we propose a modified cycle generative adversarial network(cycleGAN) for ultrasound image enhancement from multiple organs via unpaired pre-training.We introduce an ultrasound image pre-training method that does not require paired images,alleviating the requirement for large-scale paired datasets.We also propose an enhanced block with different structures in the pre-training and fine-tuning phases,which can help achieve the goals of different training phases.To improve the robustness of the model,we add Gaussian noise to the training images as data augmentation.Our approach is effective in obtaining the best quantitative evaluation results using a small number of parameters and less training costs to improve the quality of handheld ultrasound devices.
基金supported in part by the National Key Research and Development Program of China(2020YFB1313002)the National Natural Science Foundation of China(62276023,U22B2055,62222302,U2013202)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-22-003C1)the Postgraduate Education Reform Project of Henan Province(2021SJGLX260Y)。
文摘Underwater image enhancement aims to restore a clean appearance and thus improves the quality of underwater degraded images.Current methods feed the whole image directly into the model for enhancement.However,they ignored that the R,G and B channels of underwater degraded images present varied degrees of degradation,due to the selective absorption for the light.To address this issue,we propose an unsupervised multi-expert learning model by considering the enhancement of each color channel.Specifically,an unsupervised architecture based on generative adversarial network is employed to alleviate the need for paired underwater images.Based on this,we design a generator,including a multi-expert encoder,a feature fusion module and a feature fusion-guided decoder,to generate the clear underwater image.Accordingly,a multi-expert discriminator is proposed to verify the authenticity of the R,G and B channels,respectively.In addition,content perceptual loss and edge loss are introduced into the loss function to further improve the content and details of the enhanced images.Extensive experiments on public datasets demonstrate that our method achieves more pleasing results in vision quality.Various metrics(PSNR,SSIM,UIQM and UCIQE) evaluated on our enhanced images have been improved obviously.
基金supported by the National Natural Science Foundation of China(62276192)。
文摘Low-light images suffer from low quality due to poor lighting conditions,noise pollution,and improper settings of cameras.To enhance low-light images,most existing methods rely on normal-light images for guidance but the collection of suitable normal-light images is difficult.In contrast,a self-supervised method breaks free from the reliance on normal-light data,resulting in more convenience and better generalization.Existing self-supervised methods primarily focus on illumination adjustment and design pixel-based adjustment methods,resulting in remnants of other degradations,uneven brightness and artifacts.In response,this paper proposes a self-supervised enhancement method,termed as SLIE.It can handle multiple degradations including illumination attenuation,noise pollution,and color shift,all in a self-supervised manner.Illumination attenuation is estimated based on physical principles and local neighborhood information.The removal and correction of noise and color shift removal are solely realized with noisy images and images with color shifts.Finally,the comprehensive and fully self-supervised approach can achieve better adaptability and generalization.It is applicable to various low light conditions,and can reproduce the original color of scenes in natural light.Extensive experiments conducted on four public datasets demonstrate the superiority of SLIE to thirteen state-of-the-art methods.Our code is available at https://github.com/hanna-xu/SLIE.
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
文摘Finger vein extraction and recognition hold significance in various applications due to the unique and reliable nature of finger vein patterns. While recently finger vein recognition has gained popularity, there are still challenges associated with extracting and processing finger vein patterns related to image quality, positioning and alignment, skin conditions, security concerns and processing techniques applied. In this paper, a method for robust segmentation of line patterns in strongly blurred images is presented and evaluated in vessel network extraction from infrared images of human fingers. In a four-step process: local normalization of brightness, image enhancement, segmentation and cleaning were involved. A novel image enhancement method was used to re-establish the line patterns from the brightness sum of the independent close-form solutions of the adopted optimization criterion derived in small windows. In the proposed method, the computational resources were reduced significantly compared to the solution derived when the whole image was processed. In the enhanced image, where the concave structures have been sufficiently emphasized, accurate detection of line patterns was obtained by local entropy thresholding. Typical segmentation errors appearing in the binary image were removed using morphological dilation with a line structuring element and morphological filtering with a majority filter to eliminate isolated blobs. The proposed method performs accurate detection of the vessel network in human finger infrared images, as the experimental results show, applied both in real and artificial images and can readily be applied in many image enhancement and segmentation applications.
基金This work is supported by the research project (grant No. G20000467) of the Institute of Geology and Geophysics, CAS and bythe China Postdoctoral Science Foundation (No. 2004036083).
文摘In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.
基金supported by the National Natural Science Foundation of China(82020108006 and 81730025 to Chen Zhao,U2001209 to Bo Yan)the Excellent Academic Leaders of Shanghai(18XD1401000 to Chen Zhao)the Natural Science Foundation of Shanghai,China(21ZR1406600 to Weimin Tan).
文摘In ophthalmology,the quality of fundus images is critical for accurate diagnosis,both in clinical practice and in artificial intelligence(AI)-assisted diagnostics.Despite the broad view provided by ultrawide-field(UWF)imaging,pseudocolor images may conceal critical lesions necessary for precise diagnosis.To address this,we introduce UWF-Net,a sophisticated image enhancement algorithm that takes disease characteristics into consideration.Using the Fudan University ultra-wide-field image(FDUWI)dataset,which includes 11294 Optos pseudocolor and 2415 Zeiss true-color UWF images,each of which is rigorously annotated,UWF-Net combines global style modeling with feature-level lesion enhancement.Pathological consistency loss is also applied to maintain fundus feature integrity,significantly improving image quality.Quantitative and qualitative evaluations demonstrated that UWF-Net outperforms existing methods such as contrast limited adaptive histogram equalization(CLAHE)and structure and illumination constrained generative adversarial network(StillGAN),delivering superior retinal image quality,higher quality scores,and preserved feature details after enhancement.In disease classification tasks,images enhanced by UWF-Net showed notable improvements when processed with existing classification systems over those enhanced by StillGAN,demonstrating a 4.62%increase in sensitivity(SEN)and a 3.97%increase in accuracy(ACC).In a multicenter clinical setting,UWF-Net-enhanced images were preferred by ophthalmologic technicians and doctors,and yielded a significant reduction in diagnostic time((13.17±8.40)s for UWF-Net enhanced images vs(19.54±12.40)s for original images)and an increase in diagnostic accuracy(87.71%for UWF-Net enhanced images vs 80.40%for original images).Our research verifies that UWF-Net markedly improves the quality of UWF imaging,facilitating better clinical outcomes and more reliable AI-assisted disease classification.The clinical integration of UWF-Net holds great promise for enhancing diagnostic processes and patient care in ophthalmology.
文摘Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for gastrointestinal disease identification in the clinical setting.A randomized controlled trial demonstrated improvements in the colorectal adenoma detection rate(ADR)and the mean number of adenomas per procedure(MAP)of TXI compared with those of white-light imaging(WLI)observation(58.7%vs 42.7%,adjusted relative risk 1.35,95%CI:1.17-1.56;1.36 vs 0.89,adjusted incident risk ratio 1.48,95%CI:1.22-1.80,respectively).A cross-over study also showed that the colorectal MAP and ADR in TXI were higher than those in WLI(1.5 vs 1.0,adjusted odds ratio 1.4,95%CI:1.2-1.6;58.2%vs 46.8%,1.5,1.0-2.3,respectively).A randomized controlled trial demonstrated non-inferiority of TXI to narrow-band imaging in the colorectal mean number of adenomas and sessile serrated lesions per procedure(0.29 vs 0.30,difference for non-inferiority-0.01,95%CI:-0.10 to 0.08).A cohort study found that scoring for ulcerative colitis severity using TXI could predict relapse of ulcerative colitis.A cross-sectional study found that TXI improved the gastric cancer detection rate compared to WLI(0.71%vs 0.29%).A cross-sectional study revealed that the sensitivity and accuracy for active Helicobacter pylori gastritis in TXI were higher than those of WLI(69.2%vs 52.5%and 85.3%vs 78.7%,res-pectively).In conclusion,TXI can improve gastrointestinal lesion detection and qualitative diagnosis.Therefore,further studies on the efficacy of TXI in clinical practice are required.
基金Supported by the Chongging Medical Scientific Research Project(Joint Project of Chongqing Health Commission and Science and Technology Bureau),No.2022QNXM013 and No.2023MSXM016.
文摘Determining whether sevoflurane sedation in children leads to“pseudo”prominent leptomeningeal contrast enhancement(pLMCE)on 3 Tesla magnetic resonance imaging will help reduce overdiagnosis by radiologists and clarify the pathophysiological changes of pLMCE.
文摘To address the issue of deteriorated PCB image quality in the quality inspection process due to insufficient or uneven lighting, we proposed an image enhancement fusion algorithm based on different color spaces. Firstly, an improved MSRCR method was employed for brightness enhancement of the original image. Next, the color space of the original image was transformed from RGB to HSV, followed by processing the S-channel image using bilateral filtering and contrast stretching algorithms. The V-channel image was subjected to brightness enhancement using adaptive Gamma and CLAHE algorithms. Subsequently, the processed image was transformed back to the RGB color space from HSV. Finally, the images processed by the two algorithms were fused to create a new RGB image, and color restoration was performed on the fused image. Comparative experiments with other methods indicated that the contrast of the image was optimized, texture features were more abundantly preserved, brightness levels were significantly improved, and color distortion was prevented effectively, thus enhancing the quality of low-lit PCB images.
基金supported by the National Natural Science Foundation of China (Grant Nos.60772058 and 61271406)
文摘Underwater imaging posts a challenge due to the degradation by the absorption and scattering occurred during light propagation as well as poor lighting conditions in water medium Although image filtering techniques are utilized to improve image quality effectively, problems of the distortion of image details and the bias of color correction still exist in output images due to the complexity of image texture distribution. This paper proposes a new underwater image enhancement method based on image struc- tural decomposition. By introducing a curvature factor into the Mumford_Shah_G decomposition algorithm, image details and struc- ture components are better preserved without the gradient effect. Thus, histogram equalization and Retinex algorithms are applied in the decomposed structure component for global image enhancement and non-uniform brightness correction for gray level and the color images, then the optical absorption spectrum in water medium is incorporate to improve the color correction. Finally, the en- hauced structure and preserved detail component are re.composed to generate the output. Experiments with real underwater images verify the image improvement by the proposed method in image contrast, brightness and color fidelity.
文摘Due to the special characteristics of light in water,the information of the red channel is seriously attenuated in collected image.This causes other colors to dominate the image.This paper proposes an underwater image enhancement algorithm based on red channel weighted compensation and gamma correction model.Firstly,by analyzing the attenuation characteristics of RGB channels,the intensity and the edge information of red channel are compensated by weighting the attenuation coefficient ratio between different channels to correct the chromaticity.Then the gamma correction model is employed to stretch the intensity range to enhance the contrast which makes the image look clearer.The experimental results show that the proposed algorithm can correct the color cast effect and improve the contrast by nearly 2 times for the underwater images with too much red component attenuation.
文摘Abstract: Based on digital signal processor(DSP) and field programmable gate array(FPGA) techniques, the architecture of super large view field(SLVF) panoramic night vision image processing hardware platform was established. The panoramic unwrapping and correcting algorithm, up to a full 360°, based on coordinate rotation digital computer (CORDIC) and night vision image enhancement algorithm, based on histogram equalization theory and edge detection theory, was presented in this paper, with the purpose of processing night vision dynamic panoramic annular image. The annular image can be unwrapped and corrected to conventional rectangular panorama by the panoramic image processing algorithm, which uses the pipelined CORDIC configuration to realize a trigonometric function generator with high speed and high precision. Histogram equalization algorithm can perfectly enhance the contrast of the night vision image. Edge detection algorithm can be propitious to find and detect small dim dynamic targets in night vision circumstances. After abundant experiment, the al- gorithm for panoramic image processing and night vision image enhancement is successfully implemented in FPGA and DSP. The panoramic night vision image system is a compact device, with no external rotating parts. And the system can reliably and dynamically detect 360* SLVF panoramic night vision image.
文摘In this paper, an interactive image enhancement (HE) technique based on fuzzy relaxation is presented, which allows the user to select different intensity levels for enhancement and intermit the enhancement process according to his/her preference in applications. First, based on an analysis of the convergence of a fuzzy relaxation algorithm for image contrast enhancement, an improved version of this algorithm, which is called FuzzIIE Method 1, is suggested by deriving a relationship between the convergence regions and the parameters in the transformations defined in the algorithm. Then a method called FuzzIIE Method 2 is introduced by using a different fuzzy relaxation function, in which there is no need to re-select the parameter values for interactive image enhancement. Experimental results are presented demonstrating the enhancement capabilities of the proposed methods under different conditions.
基金supported by the National Natural Science Foundation of China(61472324)
文摘To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement algorithm. This algorithm introduces fuzzy entropy, makes full use of neighborhood information, fuzzy information and human visual characteristics.To enhance an image, this paper first carries out the reasonable fuzzy-3 partition of its histogram into the dark region, intermediate region and bright region. It then extracts the statistical characteristics of the three regions and adaptively selects the parameter αaccording to the statistical characteristics of the image’s gray-scale values. It also adds a useful nonlinear transform, thus increasing the ubiquity of the algorithm. Finally, the causes for the gray-scale value overcorrection that occurs in the traditional image enhancement algorithms are analyzed and their solutions are proposed.The simulation results show that our image enhancement algorithm can effectively suppress the noise of an image, enhance its contrast and visual effect, sharpen its edge and adjust its dynamic range.
基金Project(61134006)supported by the National Natural Science Foundation of ChinaProject(2012BAF03B05)supported by the National Key Technology R&D Program of ChinaProject(11JJ6062)supported by Hunan Provincial Natural Science Foundation,China
文摘Froth image could strongly indicate the production status in mineral flotation process.Considering low contrast and sensitivity to noises and illumination of froth images in flotation cells,an improved image enhancement algorithm based on nonsubsampled contourlet transform (NSCT) and multiscale Retinex algorithm has been proposed.Nonsubsampled contourlet transform was firstly adopted to decompose the flotation froth images,ensure signals invariance and avoid the blurring edge.Secondly,a multiscale Retinex algorithm was used to enhance the lower frequency image and improve the brightness uniformity.Adaptive classification method based on Bayes atrophy threshold was proposed to eliminate noise,preserve strong edges,and enhance weak edges of band-pass sub-band images.Experiment shows that the proposed method could enhance the edge,contour,details and curb noise,and improve visual effects.Under-segmentation caused by noise and blurring edge has been solved,which lays a foundation for extracting foamy morphological flotation froth and analyzing grade.
基金supported by the National Natural Science Foundation of China(61771020,61471412,2019KD0AC02)。
文摘In this paper,we present a tensor least square based model for sand/sandstorm removal in images.The main contributions of this paper are as follows.First,an important intrinsic natural feature of outdoor scenes free of sand/sandstorm is found that the outlines in RGB channels are somewise similar,which discloses the physical validation using the tensor instead of the matrix.Second,a tensor least square optimization model is presented for the decomposition of edge-preserving base layers and details.This model not only decomposes the color image(taken as an inseparable indivisibility)in X,Y directions,but also in Z direction,which meets the statistical feature of natural scenes and can physically disclose the intrinsic color information.The model’s advantages are twofold:one is the decomposition of edgepreserving base layers and details that can be employed for contrast enhancement without artificial halos,and the other one is the color driving ability that makes the enhanced images as close to natural images as possible via the inherent color structure.Thirdly,the tensor least square optimization model based image enhancement scheme is discussed for the sandstorm weather images.Finally,the experiments and comparisons with the stateof-the-art methods on real degraded images under sandstorm weather are shown to verify our method’s efficiency.