Since there is lack of methodology to assess the performance of defogging algorithm and the existing assessment methods have some limitations,three new methods for assessing the defogging algorithm were proposed.One w...Since there is lack of methodology to assess the performance of defogging algorithm and the existing assessment methods have some limitations,three new methods for assessing the defogging algorithm were proposed.One was using synthetic foggy image simulated by image degradation model to assess the defogging algorithm in full-reference way.In this method,the absolute difference was computed between the synthetic image with and without fog.The other two were computing the fog density of gray level image or constructing assessment system of color image from human visual perception to assess the defogging algorithm in no-reference way.For these methods,an assessment function was defined to evaluate algorithm performance from the function value.Using the defogging algorithm comparison,the experimental results demonstrate the effectiveness and reliability of the proposed methods.展开更多
Outdoor cameras play an important role in monitoring security and social governance.As a common weather phenomenon,haze can easily affect the quality of camera shooting,resulting in loss and distortion of image detail...Outdoor cameras play an important role in monitoring security and social governance.As a common weather phenomenon,haze can easily affect the quality of camera shooting,resulting in loss and distortion of image details.This paper proposes an improved multi-exposure image fusion defogging technique based on the artificial multi-exposure image fusion(AMEF)algorithm.First,the foggy image is adaptively exposed,and the fused image is subsequently obtained via multiple exposures.The fusion weight is determined by the saturation,contrast,and brightness.Finally,the image fused by a multi-scale Laplacian algorithm is enhanced with simple adaptive details to obtain a clearer defogging image.It is subjectively and objectively verified that this algorithm can obtain more image details and distinct picture colors without a priori information,effectively improving the defogging ability.展开更多
In underwater scenes,the quality of the video and image acquired by the underwater imaging system suffers from severe degradation,influencing target detection and recognition.Thus,restoring real scenes from blurred vi...In underwater scenes,the quality of the video and image acquired by the underwater imaging system suffers from severe degradation,influencing target detection and recognition.Thus,restoring real scenes from blurred videos and images is of great significance.Owing to the light absorption and scattering by suspended particles,the images acquired often have poor visibility,including color shift,low contrast,noise,and blurring issues.This paper aims to classify and compare some of the significant technologies in underwater image defogging,presenting a comprehensive picture of the current research landscape for researchers.First we analyze the reasons for degradation of underwater images and the underwater optical imaging model.Then we classify the underwater image defogging technologies into three categories,including image restoration approaches,image enhancement approaches,and deep learning approaches.Afterward,we present the objective evaluation metrics and analyze the state-of-the-art approaches.Finally,we summarize the shortcomings of the defogging approaches for underwater images and propose seven research directions.展开更多
Imaging through fluctuating scattering media such as fog is of challenge since it seriously degrades the image quality.We investigate how the image quality of computational ghost imaging is reduced by fluctuating fog ...Imaging through fluctuating scattering media such as fog is of challenge since it seriously degrades the image quality.We investigate how the image quality of computational ghost imaging is reduced by fluctuating fog and how to obtain a high-quality defogging ghost image. We show theoretically and experimentally that the photon number fluctuations introduced by fluctuating fog is the reason for ghost image degradation. An algorithm is proposed to process the signals collected by the computational ghost imaging device to eliminate photon number fluctuations of different measurement events. Thus, a high-quality defogging ghost image is reconstructed even though fog is evenly distributed on the optical path. A nearly 100% defogging ghost image is obtained by further using a cycle generative adversarial network to process the reconstructed defogging image.展开更多
基金Projects(91220301,61175064,61273314)supported by the National Natural Science Foundation of ChinaProject(126648)supported by the Postdoctoral Science Foundation of Central South University,ChinaProject(2012170301)supported by the New Teacher Fund for School of Information Science and Engineering,Central South University,China
文摘Since there is lack of methodology to assess the performance of defogging algorithm and the existing assessment methods have some limitations,three new methods for assessing the defogging algorithm were proposed.One was using synthetic foggy image simulated by image degradation model to assess the defogging algorithm in full-reference way.In this method,the absolute difference was computed between the synthetic image with and without fog.The other two were computing the fog density of gray level image or constructing assessment system of color image from human visual perception to assess the defogging algorithm in no-reference way.For these methods,an assessment function was defined to evaluate algorithm performance from the function value.Using the defogging algorithm comparison,the experimental results demonstrate the effectiveness and reliability of the proposed methods.
文摘Outdoor cameras play an important role in monitoring security and social governance.As a common weather phenomenon,haze can easily affect the quality of camera shooting,resulting in loss and distortion of image details.This paper proposes an improved multi-exposure image fusion defogging technique based on the artificial multi-exposure image fusion(AMEF)algorithm.First,the foggy image is adaptively exposed,and the fused image is subsequently obtained via multiple exposures.The fusion weight is determined by the saturation,contrast,and brightness.Finally,the image fused by a multi-scale Laplacian algorithm is enhanced with simple adaptive details to obtain a clearer defogging image.It is subjectively and objectively verified that this algorithm can obtain more image details and distinct picture colors without a priori information,effectively improving the defogging ability.
基金Project supported by the National Natural Science Foundation of China(No.61702074)the Liaoning Provincial Natural Science Foundation of China(No.20170520196)the Fundamental Research Funds for the Central Universities,China(Nos.3132019205 and 3132019354)。
文摘In underwater scenes,the quality of the video and image acquired by the underwater imaging system suffers from severe degradation,influencing target detection and recognition.Thus,restoring real scenes from blurred videos and images is of great significance.Owing to the light absorption and scattering by suspended particles,the images acquired often have poor visibility,including color shift,low contrast,noise,and blurring issues.This paper aims to classify and compare some of the significant technologies in underwater image defogging,presenting a comprehensive picture of the current research landscape for researchers.First we analyze the reasons for degradation of underwater images and the underwater optical imaging model.Then we classify the underwater image defogging technologies into three categories,including image restoration approaches,image enhancement approaches,and deep learning approaches.Afterward,we present the objective evaluation metrics and analyze the state-of-the-art approaches.Finally,we summarize the shortcomings of the defogging approaches for underwater images and propose seven research directions.
基金supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2022MF249)。
文摘Imaging through fluctuating scattering media such as fog is of challenge since it seriously degrades the image quality.We investigate how the image quality of computational ghost imaging is reduced by fluctuating fog and how to obtain a high-quality defogging ghost image. We show theoretically and experimentally that the photon number fluctuations introduced by fluctuating fog is the reason for ghost image degradation. An algorithm is proposed to process the signals collected by the computational ghost imaging device to eliminate photon number fluctuations of different measurement events. Thus, a high-quality defogging ghost image is reconstructed even though fog is evenly distributed on the optical path. A nearly 100% defogging ghost image is obtained by further using a cycle generative adversarial network to process the reconstructed defogging image.