期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Subset-based local vs.finite element-based global digital image correlation:A comparison study 被引量:2
1
作者 Bo Wang Bing Pan 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第5期200-208,共9页
Being the two primary approaches for full-field kinematics measurements, both subset-based local digital image correlation (DIC) and finite element-based global DIC have been extensively studied. Nowadays, most comm... Being the two primary approaches for full-field kinematics measurements, both subset-based local digital image correlation (DIC) and finite element-based global DIC have been extensively studied. Nowadays, most commercial DIC systems employ local DIC algorithm because of its advantages of straight forward principle and higher efficiency. However, several researchers argue that global DIC can provide better displacement results due to the displacement continuity constraint among adjacent elements. As such, thoroughly examining the performance of these two different DIC methods seems to be highly necessary. Here, the random errors associated with local DIC and two global DIC methods are theoretically analyzed at first. Subsequently, based on the same algorithmic details and parameters during analyses of numerical and real experiments, the performance of the different DIC approaches is fairly compared. Theoretical and experimental results reveal that local DIC outperforms its global counterpart in terms of both displacement results and computational efficiency when element (subset) size is no less than 11 pixels. 展开更多
关键词 Digital image correlation Displacement measurement Finite element Subset Subpixel
下载PDF
Calibrating the linearity between grayscale and element content for X-ray KES imaging of alloys 被引量:2
2
作者 Xiao-Lu Ju Biao Deng +7 位作者 Ke Li Fu-Cheng Yu Hai-Peng Zhang Ming-Wei Xu Guo-Hao Du Hong-Lan Xie Bin Li Ti-Qiao Xiao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第1期1-12,共12页
Doped elements in alloys significantly impact their performance.Conventional methods usually sputter the surface material of the sample,or their performance is limited to the surface of alloys owing to their poor pene... Doped elements in alloys significantly impact their performance.Conventional methods usually sputter the surface material of the sample,or their performance is limited to the surface of alloys owing to their poor penetration ability.The X-ray K-edge subtraction(KES)method exhibits great potential for the nondestructive in situ detection of element contents in alloys.However,the signal of doped elements usually deteriorates because of the strong absorption of the principal component and scattering of crystal grains.This in turn prevents the extensive application of X-ray KES imaging to alloys.In this study,methods were developed to calibrate the linearity between the grayscale of the KES image and element content.The methods were aimed at the sensitive analysis of elements in alloys.Furthermore,experiments with phantoms and alloys demonstrated that,after elaborate calibration,X-ray KES imaging is capable of nondestructive and sensitive analysis of doped elements in alloys. 展开更多
关键词 X-ray KES imaging Grayscale calibration Element analysis for alloy Nondestructive imaging of elements
下载PDF
Multi-objective Optimal Design of High Frequency Probe for Scanning Ion Conductance Microscopy 被引量:2
3
作者 GUO Renfei ZHUANG Jian +2 位作者 MA Li LI Fei YU Dehong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期195-203,共9页
Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modul... Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based bopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To fiarther improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency. 展开更多
关键词 scanning ion conductance microscopy(SICM) multi-objective optimization high frequency probe finite element analysis imaging quality
下载PDF
Elemental x-ray imaging using Zernike phase contras
4
作者 邵其刚 陈健 +5 位作者 Faiz Wali 鲍园 王志立 朱佩平 田扬超 高昆 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期545-548,共4页
We develop an element-specific x-ray microscopy method by using Zernike phase contrast imaging near absorption edges, where a real part of refractive index changes abruptly. In this method two phase contrast images ar... We develop an element-specific x-ray microscopy method by using Zernike phase contrast imaging near absorption edges, where a real part of refractive index changes abruptly. In this method two phase contrast images are subtracted to obtain the target element: one is at the absorption edge of the target element and the other is near the absorption edge. The x-ray exposure required by this method is expected to be significantly lower than that of conventional absorption-based x-ray elemental imaging methods. Numerical calculations confirm the advantages of this highly efficient imaging method. 展开更多
关键词 x-ray imaging Zernike phase contrast elemental imaging
下载PDF
Damage evolution of PμLSE additive-manufactured micro-lattice metastructures: Synchrotron radiation 3D tomography image-based analysis 被引量:1
5
作者 QingLiang Zeng WenWang Wu +3 位作者 WenXia Hu Li Xi Ran Tao DaiNing Fang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2020年第10期71-80,共10页
The manufacturing of additives with projection micro litho stereo exposure(PμLSE)has provided an opportunity for the fabrication of metastructures with complex microstructures at micro-nano resolutions.However,the pe... The manufacturing of additives with projection micro litho stereo exposure(PμLSE)has provided an opportunity for the fabrication of metastructures with complex microstructures at micro-nano resolutions.However,the performance evaluation of as-fabricated metastructures is challenging.The benefit of synchrotron radiation-based 3 D imaging techniques and advanced image processing methods makes it is feasible to study fabrication defects and damage processes of micro-nanoscale bodycentered cubic(BCC)lattices manufactured with PμLSE.First,synchrotron radiation technology is used to capture the structural features inside the micro-lattice samples.Subsequently,several types of statistical defects-based image finite element models are adopted to analyze the failure process of the structure under compression loading.Finally,comparisons between in situ experiments and numerical simulation results are performed for verification.The method of the combined non-destructive testing of synchrotron radiation and image finite element technology provides a robust technique for evaluating the performances of additive-manufactured micro-lattice with complex microstructures. 展开更多
关键词 synchrotron radiation X-ray micro-lattice image finite element method in situ compression experiment
原文传递
Improvement of predictions of petrophysical transport behavior using three-dimensional finite volume element model with micro-CT images 被引量:6
6
作者 刘建军 宋睿 崔梦梦 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第2期234-241,共8页
Due to the intricate structure of porous media, the macroscopic petrophysical transport properties such as the permeability and the saturation used for the reservoir prediction also show a very complex nature and are ... Due to the intricate structure of porous media, the macroscopic petrophysical transport properties such as the permeability and the saturation used for the reservoir prediction also show a very complex nature and are difficult to obtain. Thus, a better understanding of the influence of the rock structure on the petrophysical transport properties is important. In this paper, we present a universal finite volume element modeling approach to reconstruct the three dimensional pore models from the micro-CT images based on the commercial software Mimics and ICEM, prior to the pore network model based on some basic assumptions. Moreover, tetra finite volume elements are piled up to realize the geometry reconstruction and the meshing process. Compared with the former methods, this process avoids the tremendously large storage requirement for the reconstructed porous geometry and the failures of meshing these complex polygon geometries, and at the same time improves the predictions of petrophysical transport behaviors. The model is tested on two Berea sandstones, four sandstone samples, two carbonate samples, and one Synthetic Silica. Single- and two phase flow simulations are conducted based on the Navier-Stokes equations in the Fluent software. Good agreements are obtained on both the network structures and predicted single- and two- phase transport properties against benchmark experimental data. 展开更多
关键词 porous media pore-scale finite volume element model micro-CT images single-and two-phase flow
原文传递
3D image reconstruction with a controllable overlapping number of elemental images in computational integral imaging
7
作者 Myungjin Cho Donghak Shin 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第5期31-34,共4页
In this Letter, we propose a three-dimensional (3D) image reconstruction method with a controllable overlapping number of elemental images in computational integral imaging. The proposed method can control the overl... In this Letter, we propose a three-dimensional (3D) image reconstruction method with a controllable overlapping number of elemental images in computational integral imaging. The proposed method can control the overlap- ping number of pixels coming from the elemental images by using the subpixel distance based on ray optics between a 3D object and an image sensor. The use of a controllable overlapping number enables us to provide an improved 3D image visualization by controlling the inter-pixel interference within the reconstructed pixels. To find the optimal overlapping number, we simulate the pickup and reconstruction processes and utilize the numerical reconstruction results using a peak signal-to-noise ratio (PSNR) metric. To demonstrate the feasibility of our work in optical experiments, we carry out the preliminary experiments and present the results. 展开更多
关键词 over CIIR image reconstruction with a controllable overlapping number of elemental images in computational integral imaging PSNR
原文传递
Distortion correction for the elemental images of integral imaging by introducing the directional diffuser
8
作者 于迅博 桑新柱 +5 位作者 高鑫 杨神武 刘博阳 陈铎 颜玢玢 余重秀 《Chinese Optics Letters》 SCIE EI CAS CSCD 2018年第4期56-60,共5页
A distortion correction method for the elemental images of integral imaging(Ⅱ) by utilizing the directional diffuser is demonstrated. In the traditional Ⅱ, the distortion originating from lens aberration wraps ele... A distortion correction method for the elemental images of integral imaging(Ⅱ) by utilizing the directional diffuser is demonstrated. In the traditional Ⅱ, the distortion originating from lens aberration wraps elemental images and degrades the image quality severely. According to the theoretical analysis and experiments, it can be proved that the farther the three-dimensional image is displayed from the lens array, the more serious the distortion is. To analyze the process of eliminating lens distortion, one lens and its corresponding elemental image are separated from the traditional Ⅱ. By introducing the directional diffuser, the aperture stop of the separated optical system changes from the eye's pupil to the lens. In terms of contrast experiments, the distortion of the improved display system is corrected effectively. In the experiment, when the distance between the reconstructed image and lens array is equal to 120 mm, the largest lens distortion is decreased from 46.6% to 3.3%. 展开更多
关键词 Distortion correction for the elemental images of integral imaging by introducing the directional diffuser
原文传递
Multi-scale magnetic resonance measurements and validation of Discrete Element Model simulations 被引量:3
9
作者 Christoph R. Müller Daniel J. Holland +3 位作者 James R. Third Andrew J. Sederman John S. Dennis Lynn F. Gladden 《Particuology》 SCIE EI CAS CSCD 2011年第4期330-341,共12页
This short review describes the capabilities of magnetic resonance (MR) to image opaque single- and two-phase granular systems, such as rotating cylinders and gas-fluidized beds operated in different fluidization re... This short review describes the capabilities of magnetic resonance (MR) to image opaque single- and two-phase granular systems, such as rotating cylinders and gas-fluidized beds operated in different fluidization regimes. The unique capability of MR to not only image the solids' distribution (voidage) but also the velocity of the particulate phase is clearly shown. It is demonstrated that MR can provide measurements over different length and time scales. With the MR equipment used for the studies summarized here, temporal and spatial scales range from sub-millisecond to hours and from a few hundred micrometres to a few centimetres, respectively. Besides providing crucial data required for an improved understanding of the underlying physics of granular flows, multi-scale MR measurements were also used to validate numerical simulations of granular systems. It is shown that predictions of time-averaged properties, such as voidage and velocity of the particulate phase, made using the Discrete Element Model agree very well with MR measurements. 展开更多
关键词 Discrete Element Modelling Magnetic resonance imaging MultiscaleGas-fluidized beds Rotating cylinders
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部