Shallow conductive heterogeneity can lead to static shifts ain the apparent resistivity sounding curve of controlled-source audio-frequency magnetotellurics(CSAMT).The static effect will shift the apparent resistivity...Shallow conductive heterogeneity can lead to static shifts ain the apparent resistivity sounding curve of controlled-source audio-frequency magnetotellurics(CSAMT).The static effect will shift the apparent resistivity curves along with axial log-log coordinates.Such an effect,if not properly processed,can distort the resistivity of rock formation and the depth of interfaces,and even make the geological structures unrecognizable.In this paper,we discuss the reasons and characteristics of the static shift and summarize the previous studies regarding static shift correction.Then,we propose the Guided Image Filtering algorithm to suppress static shifts in CSAMT.In detail,we use the multi-window superposition method to superimpose 1D signals into a 2D matrix image,which is subsequently processed with Guided Image Filtering.In the synthetic model study and field examples,the Guided Image Filtering algorithm has effectively corrected and suppressed static shifts,and finally improved the precision of data interpretation.展开更多
In the state of the art,grayscale image enhancement algorithms are typically adopted for enhancement of RGB color images captured with low or non-uniform illumination.As these methods are applied to each RGB channel i...In the state of the art,grayscale image enhancement algorithms are typically adopted for enhancement of RGB color images captured with low or non-uniform illumination.As these methods are applied to each RGB channel independently,imbalanced inter-channel enhancements(color distortion)can often be observed in the resulting images.On the other hand,images with non-uniform illumination enhanced by the retinex algorithm are prone to artifacts such as local blurring,halos,and over-enhancement.To address these problems,an improved RGB color image enhancement method is proposed for images captured under nonuniform illumination or in poor visibility,based on weighted guided image filtering(WGIF).Unlike the conventional retinex algorithm and its variants,WGIF uses a surround function instead of a Gaussian filter to estimate the illumination component;it avoids local blurring and halo artifacts due to its anisotropy and adaptive local regularization.To limit color distortion,RGB images are first converted to HSI(hue,saturation,intensity)color space,where only the intensity channel is enhanced,before being converted back to RGB space by a linear color restoration algorithm.Experimental results show that the proposed method is effective for both RGB color and grayscale images captured under low exposure and non-uniform illumination,with better visual quality and objective evaluation scores than from comparator algorithms.It is also efficient due to use of a linear color restoration algorithm.展开更多
A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV col...A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization(CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.展开更多
In order to improve the visibility and contrast of low-light images and better preserve the edge and details of images,a new low-light color image enhancement algorithm is proposed in this paper.The steps of the propo...In order to improve the visibility and contrast of low-light images and better preserve the edge and details of images,a new low-light color image enhancement algorithm is proposed in this paper.The steps of the proposed algorithm are described as follows.First,the image is converted from the red,green and blue(RGB)color space to the hue,saturation and value(HSV)color space,and the histogram equalization(HE)is performed on the value component.Next,non-subsampled shearlet transform(NSST)is used on the value component to decompose the image into a low frequency sub-band and several high frequency sub-bands.Then,the low frequency sub-band and high frequency sub-bands are enhanced respectively by Gamma correction and improved guided image filtering(IGIF),and the enhanced value component is formed by inverse NSST transform.Finally,the image is converted back to the RGB color space to obtain the enhanced image.Experimental results show that the proposed method not only significantly improves the visibility and contrast,but also better preserves the edge and details of images.展开更多
An improved single image dehazing method based on dark channel prior and wavelet transform is proposed. This proposed method employs wavelet transform and guided filter instead of the soft matting procedure to estimat...An improved single image dehazing method based on dark channel prior and wavelet transform is proposed. This proposed method employs wavelet transform and guided filter instead of the soft matting procedure to estimate and refine the depth map of haze images. Moreover, a contrast enhancement method based on just noticeable difference(JND) and quadratic function is adopted to enhance the contrast for the dehazed image, since the scene radiance is usually not as bright as the atmospheric light,and the dehazed image looks dim. The experimental results show that the proposed approach can effectively enhance the haze image and is well suitable for implementing on the surveillance and obstacle detection systems.展开更多
基金sponsored by the Basic Science Center Project of National Natural Science Foundation of China(72088101)。
文摘Shallow conductive heterogeneity can lead to static shifts ain the apparent resistivity sounding curve of controlled-source audio-frequency magnetotellurics(CSAMT).The static effect will shift the apparent resistivity curves along with axial log-log coordinates.Such an effect,if not properly processed,can distort the resistivity of rock formation and the depth of interfaces,and even make the geological structures unrecognizable.In this paper,we discuss the reasons and characteristics of the static shift and summarize the previous studies regarding static shift correction.Then,we propose the Guided Image Filtering algorithm to suppress static shifts in CSAMT.In detail,we use the multi-window superposition method to superimpose 1D signals into a 2D matrix image,which is subsequently processed with Guided Image Filtering.In the synthetic model study and field examples,the Guided Image Filtering algorithm has effectively corrected and suppressed static shifts,and finally improved the precision of data interpretation.
基金This work was supported by the National Natural Science Foundation of China(Grant No.2019YFB1405000)the National Natural Science Basic Research Plan Program of Shaanxi,China(Grant Nos.2019JM-162 and 2019JM-348).
文摘In the state of the art,grayscale image enhancement algorithms are typically adopted for enhancement of RGB color images captured with low or non-uniform illumination.As these methods are applied to each RGB channel independently,imbalanced inter-channel enhancements(color distortion)can often be observed in the resulting images.On the other hand,images with non-uniform illumination enhanced by the retinex algorithm are prone to artifacts such as local blurring,halos,and over-enhancement.To address these problems,an improved RGB color image enhancement method is proposed for images captured under nonuniform illumination or in poor visibility,based on weighted guided image filtering(WGIF).Unlike the conventional retinex algorithm and its variants,WGIF uses a surround function instead of a Gaussian filter to estimate the illumination component;it avoids local blurring and halo artifacts due to its anisotropy and adaptive local regularization.To limit color distortion,RGB images are first converted to HSI(hue,saturation,intensity)color space,where only the intensity channel is enhanced,before being converted back to RGB space by a linear color restoration algorithm.Experimental results show that the proposed method is effective for both RGB color and grayscale images captured under low exposure and non-uniform illumination,with better visual quality and objective evaluation scores than from comparator algorithms.It is also efficient due to use of a linear color restoration algorithm.
基金supported by the China Scholarship CouncilPostgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX17_0776)the Natural Science Foundation of NUPT(No.NY214039)
文摘A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization(CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.
基金supported by the National Natural Science Foundation of China (61501260)the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0776)the Research Project of Nanjing University of Posts and Telecommunications (NY218089&NY219076)
文摘In order to improve the visibility and contrast of low-light images and better preserve the edge and details of images,a new low-light color image enhancement algorithm is proposed in this paper.The steps of the proposed algorithm are described as follows.First,the image is converted from the red,green and blue(RGB)color space to the hue,saturation and value(HSV)color space,and the histogram equalization(HE)is performed on the value component.Next,non-subsampled shearlet transform(NSST)is used on the value component to decompose the image into a low frequency sub-band and several high frequency sub-bands.Then,the low frequency sub-band and high frequency sub-bands are enhanced respectively by Gamma correction and improved guided image filtering(IGIF),and the enhanced value component is formed by inverse NSST transform.Finally,the image is converted back to the RGB color space to obtain the enhanced image.Experimental results show that the proposed method not only significantly improves the visibility and contrast,but also better preserves the edge and details of images.
基金supported by the National Natural Science Foundation of China(61075013)the Joint Funds of the Civil Aviation(61139003)
文摘An improved single image dehazing method based on dark channel prior and wavelet transform is proposed. This proposed method employs wavelet transform and guided filter instead of the soft matting procedure to estimate and refine the depth map of haze images. Moreover, a contrast enhancement method based on just noticeable difference(JND) and quadratic function is adopted to enhance the contrast for the dehazed image, since the scene radiance is usually not as bright as the atmospheric light,and the dehazed image looks dim. The experimental results show that the proposed approach can effectively enhance the haze image and is well suitable for implementing on the surveillance and obstacle detection systems.