A new method ,which is called image manipulation, is introduced to analyze the cavitation of flow field for the first time. As the complexity of the cavitation development must be considering, only the method of ima...A new method ,which is called image manipulation, is introduced to analyze the cavitation of flow field for the first time. As the complexity of the cavitation development must be considering, only the method of image manipulation can calculate the strength of the cavitation more accurately. This method based on wavelet transform is used to eliminate the noise. The area of the cavitations is deduced to serve as the strength of cavitation. The method is applied in an example of inducer's rotating cavitation. The results show that using image manipulation can get the accurate date of cavitation with ease,and the reason of the inducer shaft's vibration is uncovered clearly.展开更多
A galvanometric scanner with a dynamic focus was designed using a PC to realize the model transform of the image, calculate the interpolation points of the image, and implement the focus compensation of the dynamic fo...A galvanometric scanner with a dynamic focus was designed using a PC to realize the model transform of the image, calculate the interpolation points of the image, and implement the focus compensation of the dynamic focus system. The interrupt of PC was used for the real-time control. It was confirmed that the PC-based galvanometric scanner with dynamic focus could run more than 72 h stably, with an accuracy of 100 ±0.1 mm, and the period of real-time control was less than 20μs.展开更多
One-shot face reenactment is a challenging task due to the identity mismatch between source and driving faces.Most existing methods fail to completely eliminate the interference of driving subjects’identity informati...One-shot face reenactment is a challenging task due to the identity mismatch between source and driving faces.Most existing methods fail to completely eliminate the interference of driving subjects’identity information,which may lead to face shape distortion and undermine the realism of reenactment results.To solve this problem,in this paper,we propose using a 3D morphable model(3DMM)for explicit facial semantic decomposition and identity disentanglement.Instead of using 3D coefficients alone for reenactment control,we take advantage of the generative ability of 3DMM to render textured face proxies.These proxies contain abundant yet compact geometric and semantic information of human faces,which enables us to compute the face motion field between source and driving images by estimating the dense correspondence.In this way,we can approximate reenactment results by warping source images according to the motion field,and a generative adversarial network(GAN)is adopted to further improve the visual quality of warping results.Extensive experiments on various datasets demonstrate the advantages of the proposed method over existing state-of-the-art benchmarks in both identity preservation and reenactment fulfillment.展开更多
The computer graphics and computer vision communities have been working closely together in recent years and a variety of algorithms and applications have been developed to analyze and manipulate the visual media arou...The computer graphics and computer vision communities have been working closely together in recent years and a variety of algorithms and applications have been developed to analyze and manipulate the visual media around us. There are three major driving forces behind this phenomenon: 1) the availability of big data from the Internet has created a demand for dealing with the ever-increasing, vast amount of resources; 2) powerful processing tools, such as deep neural networks, provide effective ways for learning how to deal with heterogeneous visual data; 3) new data capture devices, such as the Kilxect, the bridge betweea algorithms for 2D image understanding and 3D model analysis. These driving forces have emerged only recently, and we believe that the computer graphics and computer vision communities are still in the beginning of their honeymoon phase. In this work we survey recent research on how computer vision techniques benefit computer graphics techniques and vice versa, and cover research on analysis, manipulation, synthesis, and interaction. We also discuss existing problems and suggest possible further research directions.展开更多
The capability to image, as well as control and manipulate single molecules such as nucleic acids(DNA or RNA) can greatly enrich our knowledge of the roles of individual biomolecules in cellular processes and their be...The capability to image, as well as control and manipulate single molecules such as nucleic acids(DNA or RNA) can greatly enrich our knowledge of the roles of individual biomolecules in cellular processes and their behavior in native environments. Here we summarize the recent advances of single nucleic acid imaging based on optical observation and force manipulation. We start by discussing the superiority of single molecule image, the central roles nucleic acids play in biosystems, and the significance of single molecule image towards nucleic acids. We then list a series of representative examples in brief to illustrate how nucleic acid of various morphologies has been imaged from different aspects, and what can be learned from such characterizations. Finally,concluding remarks on parts of which should be improved and outlook are outlined.展开更多
文摘A new method ,which is called image manipulation, is introduced to analyze the cavitation of flow field for the first time. As the complexity of the cavitation development must be considering, only the method of image manipulation can calculate the strength of the cavitation more accurately. This method based on wavelet transform is used to eliminate the noise. The area of the cavitations is deduced to serve as the strength of cavitation. The method is applied in an example of inducer's rotating cavitation. The results show that using image manipulation can get the accurate date of cavitation with ease,and the reason of the inducer shaft's vibration is uncovered clearly.
文摘A galvanometric scanner with a dynamic focus was designed using a PC to realize the model transform of the image, calculate the interpolation points of the image, and implement the focus compensation of the dynamic focus system. The interrupt of PC was used for the real-time control. It was confirmed that the PC-based galvanometric scanner with dynamic focus could run more than 72 h stably, with an accuracy of 100 ±0.1 mm, and the period of real-time control was less than 20μs.
基金supported in part by the Beijing Municipal Natural Science Foundation,China(No.4222054)in part by the National Natural Science Foundation of China(Nos.62276263 and 62076240)the Youth Innovation Promotion Association CAS,China(No.Y2023143).
文摘One-shot face reenactment is a challenging task due to the identity mismatch between source and driving faces.Most existing methods fail to completely eliminate the interference of driving subjects’identity information,which may lead to face shape distortion and undermine the realism of reenactment results.To solve this problem,in this paper,we propose using a 3D morphable model(3DMM)for explicit facial semantic decomposition and identity disentanglement.Instead of using 3D coefficients alone for reenactment control,we take advantage of the generative ability of 3DMM to render textured face proxies.These proxies contain abundant yet compact geometric and semantic information of human faces,which enables us to compute the face motion field between source and driving images by estimating the dense correspondence.In this way,we can approximate reenactment results by warping source images according to the motion field,and a generative adversarial network(GAN)is adopted to further improve the visual quality of warping results.Extensive experiments on various datasets demonstrate the advantages of the proposed method over existing state-of-the-art benchmarks in both identity preservation and reenactment fulfillment.
基金This research was sponsored by the National Natural Science Foundation of China under Grant Nos. 61572264 and 61373069, the National Key Research and Development Plan of China under Grant No. 2016YFB1001402, Huawei Innovation Research Program (HIRP), China Association for Science and Technology (CAST) Young Talents Plan, and Tianjin Short-Term Recruitment Program of Foreign Experts.
文摘The computer graphics and computer vision communities have been working closely together in recent years and a variety of algorithms and applications have been developed to analyze and manipulate the visual media around us. There are three major driving forces behind this phenomenon: 1) the availability of big data from the Internet has created a demand for dealing with the ever-increasing, vast amount of resources; 2) powerful processing tools, such as deep neural networks, provide effective ways for learning how to deal with heterogeneous visual data; 3) new data capture devices, such as the Kilxect, the bridge betweea algorithms for 2D image understanding and 3D model analysis. These driving forces have emerged only recently, and we believe that the computer graphics and computer vision communities are still in the beginning of their honeymoon phase. In this work we survey recent research on how computer vision techniques benefit computer graphics techniques and vice versa, and cover research on analysis, manipulation, synthesis, and interaction. We also discuss existing problems and suggest possible further research directions.
基金supported by the National Natural Science Foundation of China (21525523, 21574048, 21375042, 21405054)the National Basic Research Program of China (2015CB932600, 2013CB933000)+1 种基金the Special Fund for Strategic New Industry Development of Shenzhen, China (JCYJ20150616144425376)1000 Young Talent (to Fan Xia)
文摘The capability to image, as well as control and manipulate single molecules such as nucleic acids(DNA or RNA) can greatly enrich our knowledge of the roles of individual biomolecules in cellular processes and their behavior in native environments. Here we summarize the recent advances of single nucleic acid imaging based on optical observation and force manipulation. We start by discussing the superiority of single molecule image, the central roles nucleic acids play in biosystems, and the significance of single molecule image towards nucleic acids. We then list a series of representative examples in brief to illustrate how nucleic acid of various morphologies has been imaged from different aspects, and what can be learned from such characterizations. Finally,concluding remarks on parts of which should be improved and outlook are outlined.