Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recogn...Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recognition and interpretation of images. The paper presents an approach to implement texture-based image retrieval using M-band wavelet transform. Firstly the traditional 2-band wavelet is extended to M-band wavelet transform. Then the wavelet moments are computed by M-band wavelet coefficients in the wavelet domain. The set of wavelet moments forms the feature vector related to the texture distribution of each wavelet images. The distances between the feature vectors describe the similarities of different images. The experimental result shows that the M-band wavelet moment features of the images are effective for image indexing. The retrieval method has lower computational complexity, yet it is capable of giving better retrieval performance for a given medical image database.展开更多
Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based o...Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based on the Ada Boost BP neural network in the wavelet domain(WABNN) is proposed. A 36-dimensional image feature vector is constructed by extracting natural scene statistics(NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering(LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method.展开更多
Searching interested images based on visual properties of images is a challenging problem and it has received considerable attention from researchers in the fields like image processing, computer vision and multimedia...Searching interested images based on visual properties of images is a challenging problem and it has received considerable attention from researchers in the fields like image processing, computer vision and multimedia systems in the last 20 years. While the importance and the effect of the image features like color, texture and shape have been taken into account in many papers, there have not been many studies on the importance of the color spaces on the performance of Content Based Image Retrieval (CBIR) systems. In this paper we first experimentally study the effect of choosing color space on the performance of content based image retrieval using Wavelet decomposition of each color channel. To this end, the retrieval results of different color spaces like RGB, YUV, HSV, YCbCr and Lab are analyzed. Then as a result a new Content Based Retrieval model using Wavelet Transform in Lab color space and Color Moments is proposed. In order to increase the efficiency of the proposed model some division schemes are taken into account which improves the performance of the proposed model. The proposed model tackles one of the important restrictions in content based image retrieval, namely, the challenge between the accuracy of retrieval and its time complexity. The experimental results on two databases [19] [24] demonstrate the superiority of the proposed model compared to existing models.展开更多
Wavelet analysis provides very powerful problem\|solving tools for analyzing, encoding, compressing, reconstructing, and modeling signals and images. The amount of wavelets\|related software has been constantly multip...Wavelet analysis provides very powerful problem\|solving tools for analyzing, encoding, compressing, reconstructing, and modeling signals and images. The amount of wavelets\|related software has been constantly multiplying. Many wavelet analysis tools are widely available. This overview represents a significant survey for many currently available packages. It will be of great benefit to engineers and researchers for using the toolkits and developing new software. The beginner to learning wavelets can also get a great help from the review. If you browse around at some of the Internet sites listed in the reference of this paper, you may find more plentiful wavelet resources.展开更多
Wavelet moment invariants are constructed for object recognition based on the global feature and local feature of target, which are brought for the simple background of the underwater objects, complex structure, simil...Wavelet moment invariants are constructed for object recognition based on the global feature and local feature of target, which are brought for the simple background of the underwater objects, complex structure, similar form etc. These invariant features realize the multi-dimension feature extraction of local topology and in- variant transform. Considering translation and scale invariant characteristics were ignored by conventional wavelet moments, some improvements were done in this paper. The cubic B-spline wavelets which are optimally localized in space-frequency and close to the forms of Li's(or Zernike's) polynomial moments were applied for calculating the wavelet moments. To testify superiority of the wavelet moments mentioned in this paper, generalized regres- sion neural network(GRNN) was used to calculate the recognition rates based on wavelet invariant moments and conventional invariant moments respectively. Wavelet moments obtained 100% recognition rate for every object and the conventional moments obtained less classification rate. The result shows that wavelet moment has the ability to identify many types of objects and is suitable for laser image recognition.展开更多
Fast and satisfied medical ultrasound segmentation is known to be difficult due to speckle noises and other artificial effects. Since speckle noise is formed from random signals which are emitted by an ultrasound syst...Fast and satisfied medical ultrasound segmentation is known to be difficult due to speckle noises and other artificial effects. Since speckle noise is formed from random signals which are emitted by an ultrasound system, we can’t encounter the same way as other image noises. Lack of information in ultrasound images is another problem. Thus, segmentation results may not be accurate enough by means of customary image segmentation methods. Those methods that can specify undesirable effects and segment them by eliminating artificial effects, should be chosen. It seems to be a complicated work with high computational load. The current study presents a different approach to ultrasound image segmentation that relies mainly on local evaluation, named as local histogram range image method which is modified by means of discrete wavelet transform. Thus, a significant decrease in computational load is then achieved. The results show that it is possible for tissues to be segmented correctly.展开更多
Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa l...Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa logo at the corner or diagonal text in the background. However, this formof visible watermarking is not suitable for a large class of applications. In allsuch cases, a hidden watermark is embedded inside the original image as proofof ownership. A large number of techniques and algorithms are proposedby researchers for invisible watermarking. In this paper, we focus on issuesthat are critical for security aspects in the most common domains like digitalphotography copyrighting, online image stores, etc. The requirements of thisclass of application include robustness (resistance to attack), blindness (directextraction without original image), high embedding capacity, high Peak Signalto Noise Ratio (PSNR), and high Structural Similarity Matrix (SSIM). Mostof these requirements are conflicting, which means that an attempt to maximizeone requirement harms the other. In this paper, a blind type of imagewatermarking scheme is proposed using Lifting Wavelet Transform (LWT)as the baseline. Using this technique, custom binary watermarks in the formof a binary string can be embedded. Hu’s Invariant moments’ coefficientsare used as a key to extract the watermark. A Stochastic variant of theFirefly algorithm (FA) is used for the optimization of the technique. Undera prespecified size of embedding data, high PSNR and SSIM are obtainedusing the Stochastic Gradient variant of the Firefly technique. The simulationis done using Matrix Laboratory (MATLAB) tool and it is shown that theproposed technique outperforms the benchmark techniques of watermarkingconsidering PSNR and SSIM as quality metrics.展开更多
Based on the project of land macroscopical monitoring by CBERS,a remote sensing image of Arongqi in Inner Mongolia was studied by different methods such as histogram matching,principal component analysis,moment matchi...Based on the project of land macroscopical monitoring by CBERS,a remote sensing image of Arongqi in Inner Mongolia was studied by different methods such as histogram matching,principal component analysis,moment matching,low-pass filter and wavelet transform.A qualitative analysis and quantitative assessment was also carried out.The results showed that wavelet transform could effectively remove stripe noise,and also kept its advantages in the details.Moment matching had a better strip removal,but it changed features in its spectrum easily and it was not fit for CBERS-02 image processing.Principal component analysis could not remove stripe noise,but also strengthened it in a certain extent.展开更多
To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventiona...To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments.展开更多
文摘Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recognition and interpretation of images. The paper presents an approach to implement texture-based image retrieval using M-band wavelet transform. Firstly the traditional 2-band wavelet is extended to M-band wavelet transform. Then the wavelet moments are computed by M-band wavelet coefficients in the wavelet domain. The set of wavelet moments forms the feature vector related to the texture distribution of each wavelet images. The distances between the feature vectors describe the similarities of different images. The experimental result shows that the M-band wavelet moment features of the images are effective for image indexing. The retrieval method has lower computational complexity, yet it is capable of giving better retrieval performance for a given medical image database.
基金supported by the National Natural Science Foundation of China(61471194 61705104)+1 种基金the Science and Technology on Avionics Integration Laboratory and Aeronautical Science Foundation of China(20155552050)the Natural Science Foundation of Jiangsu Province(BK20170804)
文摘Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based on the Ada Boost BP neural network in the wavelet domain(WABNN) is proposed. A 36-dimensional image feature vector is constructed by extracting natural scene statistics(NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering(LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method.
文摘Searching interested images based on visual properties of images is a challenging problem and it has received considerable attention from researchers in the fields like image processing, computer vision and multimedia systems in the last 20 years. While the importance and the effect of the image features like color, texture and shape have been taken into account in many papers, there have not been many studies on the importance of the color spaces on the performance of Content Based Image Retrieval (CBIR) systems. In this paper we first experimentally study the effect of choosing color space on the performance of content based image retrieval using Wavelet decomposition of each color channel. To this end, the retrieval results of different color spaces like RGB, YUV, HSV, YCbCr and Lab are analyzed. Then as a result a new Content Based Retrieval model using Wavelet Transform in Lab color space and Color Moments is proposed. In order to increase the efficiency of the proposed model some division schemes are taken into account which improves the performance of the proposed model. The proposed model tackles one of the important restrictions in content based image retrieval, namely, the challenge between the accuracy of retrieval and its time complexity. The experimental results on two databases [19] [24] demonstrate the superiority of the proposed model compared to existing models.
基金(1) Supported by Foundation for University Key Teacher by the Ministry of Education(2 ) Funded By Open Re-search F und Progra
文摘Wavelet analysis provides very powerful problem\|solving tools for analyzing, encoding, compressing, reconstructing, and modeling signals and images. The amount of wavelets\|related software has been constantly multiplying. Many wavelet analysis tools are widely available. This overview represents a significant survey for many currently available packages. It will be of great benefit to engineers and researchers for using the toolkits and developing new software. The beginner to learning wavelets can also get a great help from the review. If you browse around at some of the Internet sites listed in the reference of this paper, you may find more plentiful wavelet resources.
基金the Fundamental Research Funds for Central Universities(No.HEUCF110111)the National Natural Science Foundation of China(No.51009040)+2 种基金the China Postdoctoral Science Foundation(No.2012M510928)the Heilongjiang Post-doctoral Fund(No.LBH-Z11205)the National High Technology Research and Development Program(863)of China(No.2011AA09A106)
文摘Wavelet moment invariants are constructed for object recognition based on the global feature and local feature of target, which are brought for the simple background of the underwater objects, complex structure, similar form etc. These invariant features realize the multi-dimension feature extraction of local topology and in- variant transform. Considering translation and scale invariant characteristics were ignored by conventional wavelet moments, some improvements were done in this paper. The cubic B-spline wavelets which are optimally localized in space-frequency and close to the forms of Li's(or Zernike's) polynomial moments were applied for calculating the wavelet moments. To testify superiority of the wavelet moments mentioned in this paper, generalized regres- sion neural network(GRNN) was used to calculate the recognition rates based on wavelet invariant moments and conventional invariant moments respectively. Wavelet moments obtained 100% recognition rate for every object and the conventional moments obtained less classification rate. The result shows that wavelet moment has the ability to identify many types of objects and is suitable for laser image recognition.
文摘Fast and satisfied medical ultrasound segmentation is known to be difficult due to speckle noises and other artificial effects. Since speckle noise is formed from random signals which are emitted by an ultrasound system, we can’t encounter the same way as other image noises. Lack of information in ultrasound images is another problem. Thus, segmentation results may not be accurate enough by means of customary image segmentation methods. Those methods that can specify undesirable effects and segment them by eliminating artificial effects, should be chosen. It seems to be a complicated work with high computational load. The current study presents a different approach to ultrasound image segmentation that relies mainly on local evaluation, named as local histogram range image method which is modified by means of discrete wavelet transform. Thus, a significant decrease in computational load is then achieved. The results show that it is possible for tissues to be segmented correctly.
基金funded by Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R235)Princess Nourah Bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa logo at the corner or diagonal text in the background. However, this formof visible watermarking is not suitable for a large class of applications. In allsuch cases, a hidden watermark is embedded inside the original image as proofof ownership. A large number of techniques and algorithms are proposedby researchers for invisible watermarking. In this paper, we focus on issuesthat are critical for security aspects in the most common domains like digitalphotography copyrighting, online image stores, etc. The requirements of thisclass of application include robustness (resistance to attack), blindness (directextraction without original image), high embedding capacity, high Peak Signalto Noise Ratio (PSNR), and high Structural Similarity Matrix (SSIM). Mostof these requirements are conflicting, which means that an attempt to maximizeone requirement harms the other. In this paper, a blind type of imagewatermarking scheme is proposed using Lifting Wavelet Transform (LWT)as the baseline. Using this technique, custom binary watermarks in the formof a binary string can be embedded. Hu’s Invariant moments’ coefficientsare used as a key to extract the watermark. A Stochastic variant of theFirefly algorithm (FA) is used for the optimization of the technique. Undera prespecified size of embedding data, high PSNR and SSIM are obtainedusing the Stochastic Gradient variant of the Firefly technique. The simulationis done using Matrix Laboratory (MATLAB) tool and it is shown that theproposed technique outperforms the benchmark techniques of watermarkingconsidering PSNR and SSIM as quality metrics.
基金Supported by Application and Studies on Land Macroeconomic Monitoring of CBERS from Ministry of Land and Resources
文摘Based on the project of land macroscopical monitoring by CBERS,a remote sensing image of Arongqi in Inner Mongolia was studied by different methods such as histogram matching,principal component analysis,moment matching,low-pass filter and wavelet transform.A qualitative analysis and quantitative assessment was also carried out.The results showed that wavelet transform could effectively remove stripe noise,and also kept its advantages in the details.Moment matching had a better strip removal,but it changed features in its spectrum easily and it was not fit for CBERS-02 image processing.Principal component analysis could not remove stripe noise,but also strengthened it in a certain extent.
基金Project(20040533035) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject (60874070) supported by the National Natural Science Foundation of China
文摘To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments.