期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Damage evaluation of notched aluminum alloy and weld based on acoustic emission and digital image monitoring
1
作者 朱荣华 刚铁 《China Welding》 EI CAS 2013年第1期11-15,共5页
Acoustic emission ( AE ) features during the fracture process of notched wrought aluminum alloy 7N01 and weld were investigated under the three-point bending load. Wavelet transform is used to investigate the time-f... Acoustic emission ( AE ) features during the fracture process of notched wrought aluminum alloy 7N01 and weld were investigated under the three-point bending load. Wavelet transform is used to investigate the time-frequency features of AE signals during the test. The experimental results showed that AE energy was effective indicators to detect the crack initiation for 7N01 aluminum. The digital images from monitoring the notch tip region of 7 NO1 aluminum sample verify the prediction of AE signals. The weld emits low energy, weak signal strength, and low peak amplitude, while stronger AE energy, amplitude, and more AE event counts for the base metal. In short, the AE technique was more sensitive to the changes in the fracture mode and could be used to monitor the damage development in welded structures. 展开更多
关键词 aluminum alloy crack initiation digital image monitor acoustic emission energy peak frequency
下载PDF
In-service Structural Health Monitoring of a Full-scale Composite Horizontal Tail
2
作者 武湛君 GAO Dongyue +1 位作者 WANG Yishou Gorgin RAHIM 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1215-1224,共10页
In-service structural health monitoring(SHM) technologies are critical for the utilization of composite aircraft structures. We developed a Lamb wave-based in-service SHM technology using built-in piezoelectric actu... In-service structural health monitoring(SHM) technologies are critical for the utilization of composite aircraft structures. We developed a Lamb wave-based in-service SHM technology using built-in piezoelectric actuator/sensor networks to monitor delamination extension in a full-scale composite horizontal tail. The in-service SHM technology combine of damage rapid monitoring(DRM) stage and damage imaging diagnosis(DID) stage allows for real-time monitoring and long term tracking of the structural integrity of composite aircraft structures. DRM stage using spearman rank correlation coeffi cient was introduced to generate a damage index which can be used to monitor the trend of damage extension. The DID stage based on canonical correlation analysis aimed at intuitively highlighting structural damage regions in two-dimensional images. The DRM and DID stages were trialed by an in-service SHM experiment of CFRP T-joint. Finally, the detection capability of the in-service SHM technology was verified in the SHM experiment of a full-scale composite horizontal tail. Experimental results show that the rapid monitoring method effectively monitors the damage occurrence and extension tendency in real time; damage imaging diagnosis results are consistent with those from the failure model of the composite horizontal tail structure. 展开更多
关键词 in-service structural health monitoring full-scale composite horizontal tail lamb wave damage rapid monitoring damage imaging diagnosis
下载PDF
Image dehazing based on dark channel prior and brightness enhancement for agricultural monitoring
3
作者 Xiuyuan Wang Chenghai Yang +1 位作者 Jian Zhang Huaibo Song 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第2期170-176,共7页
Obtaining clear and true images is a basic requirement for agricultural monitoring.However,under the influence of fog,haze and other adverse weather conditions,captured images are usually blurred and distorted,resulti... Obtaining clear and true images is a basic requirement for agricultural monitoring.However,under the influence of fog,haze and other adverse weather conditions,captured images are usually blurred and distorted,resulting in the difficulty of target extraction.Traditional image dehazing methods based on image enhancement technology can cause the loss of image information and image distortion.In order to address the above-mentioned problems caused by traditional image dehazing methods,an improved image dehazing method based on dark channel prior(DCP)was proposed.By enhancing the brightness of the hazed image and processing the sky area,the dim and un-natural problems caused by traditional image dehazing algorithms were resolved.Ten different test groups were selected from different weather conditions to verify the effectiveness of the proposed algorithm,and the algorithm was compared with the commonly-used histogram equalization algorithm and the DCP method.Three image evaluation indicators including mean square error(MSE),peak signal to noise ratio(PSNR),and entropy were used to evaluate the dehazing performance.Results showed that the PSNR and entropy with the proposed method increased by 21.81%and 5.71%,and MSE decreased by 40.07%compared with the original DCP method.It performed much better than the histogram equalization dehazing method with an increase of PSNR by 38.95%and entropy by 2.04%and a decrease of MSE by 84.78%.The results from this study can provide a reference for agricultural field monitoring. 展开更多
关键词 agricultural monitoring image dehazing monitoring image dark channel prior(DCP) brightness promoting
原文传递
NEAR-INFRARED IMAGING SENSOR WITH IMPROVED HANDLING AND DIRECT LOCALIZATION IN SIMULTANEOUS MAGNETIC RESONANCE IMAGING MEASUREMENTS
4
作者 SONJA SPICHTIG MARCO PICCIRELLI +1 位作者 ROBERT S.VORBURGER MARTIN WOLF 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2011年第2期191-198,共8页
We present a novel optical sensor to acquire simultaneously functional near-infrared imaging(fNIRI)and functional magnetic resonance imaging(fMRI)data with an improved handling and direct localization in the MRI compa... We present a novel optical sensor to acquire simultaneously functional near-infrared imaging(fNIRI)and functional magnetic resonance imaging(fMRI)data with an improved handling and direct localization in the MRI compared to available sensors.Quantitative phantom and interference measurements showed that both methods can be combined without reciprocal adverse effects.The direct localization of the optical sensor on MR images acquired with a T1-weighted echo sequence simplifies the co-registration of NIRI and MRI data.In addition,the optical sensor is simple to attach,which is crucial for measurements on vulnerable subjects.The fNIRI and T2^(*)-weighted fMRI data of a cerebral activation were simultaneously acquired proving the practicability of the setup. 展开更多
关键词 Medical optics instrumentation imaging systems functional monitoring and imaging
下载PDF
Flexible optoelectronic neural transistors with broadband spectrum sensing and instant electrical processing for multimodal neuromorphic computing
5
作者 Yao Ni Lu Yang +3 位作者 Jiulong Feng Jiaqi Liu Lin Sun Wentao Xu 《SmartMat》 2023年第2期120-130,共11页
A flexible optoelectronic neural transistor(OENT)that consists of a one‐step spin‐coated tri‐blend film composed of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene(C8‐BTBT),poly(3‐hexylthiophene‐2,5‐diyl)(P... A flexible optoelectronic neural transistor(OENT)that consists of a one‐step spin‐coated tri‐blend film composed of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene(C8‐BTBT),poly(3‐hexylthiophene‐2,5‐diyl)(P3HT),and poly(methyl methacrylate)(PMMA)is demonstrated.The C8‐BTBT and P3HT phases in the film partially segregate into distinct domains,which combine to provide broadband spectrum sensing,and instant electrical‐processing capabilities dominated by C8‐BTBT.The OENT is sensitive to solar radiation from the near‐ultraviolet(NUV)and to visible(Vis)radiation from blue to red.When exposed to NUV radiation,the OENT responds sensitively and retains the memory of the exposure for over 10^(3 )s.The OENT provides a warning of excessive chronic exposure to harmful NUV.These properties allow high‐pass filtering with different cut‐off frequencies fc that can restrict the reception of blue,green,or red.These switchable fc enables sensitive image reconstruction and multitarget monitoring.The device combined with a chitosan gel achieves strictly defined short‐range plasticity of<1 s that can achieve diverse instant‐computing applications such as spatiotemporally correlated coding and logic functions.Stable real‐time signal processing facilitates the realization of a Morse‐code recognition system constructed using neuro‐morphological hardware,achieving highly accurate character recognition.This study provides a useful resource that can have applications in wearable biomedical electronics and multimodal neuromorphic computing. 展开更多
关键词 flexible optoelectronic neural transistor high‐pass filtering Morse‐code recognition system sensitive image reconstruction and multitarget monitoring spatiotemporally correlated coding and logic function
原文传递
In vivo Detection and Imaging of Intraventricular Hemorrhage in Neonatal Piglets Using Electrical Impedance Tomography
6
作者 LI Yan-dong SHI Xue-tao +7 位作者 DAI Meng YOU Fu-sheng XU Can-hua FU Feng LIU Rui-gang WANG Liang GAO Guo-dong DONG Xiu-zhen 《Chinese Journal of Biomedical Engineering(English Edition)》 2018年第2期57-67,共11页
Intraventricular hemorrhage(IVH) is one of the most severe medical emergencies in neurosurgery. Early detection or diagnosis would significantly reduce the rate of disability and mortality, and improve the prognosis o... Intraventricular hemorrhage(IVH) is one of the most severe medical emergencies in neurosurgery. Early detection or diagnosis would significantly reduce the rate of disability and mortality, and improve the prognosis of the patients.Although present medical imaging techniques have high sensitivity to identify bleeding, the use of an additional, non-invasive imaging technique capable of continuously monitoring IVH is required to prevent contingent bleeding or re-bleeding. In this study, electrical impedance tomography(EIT) was applied to detect the onset of IVH modeled on 6 piglets in real time, with the subsequent process being monitored continuously. The experimental IVH model was introduced by one-time injection of 2 ml fresh autologous arterial blood into the ventricles of piglets.Results showed that resistivity variations within the brain caused by the added blood could be detected and imaged in vivo using the EIT method, and the magnitude and the size of region of interest on EIT images may be linearly associated with the volume of the blood. In conclusion, EIT has unique potential for use in clinical practice to provide invaluable real-time neuroimaging data for IVH after the improvement of electrode design, anisotropic realistic modeling, and instrumentation. 展开更多
关键词 electrical impedance tomography intraventricular hemorrhage imaging monitor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部