To visualize the structure and organization of the brain is a fundamental requirement in the research of neuroscience. Here, combining with two-photon excitation fluorescence microscopy and transgenetic mouse GAD67,we...To visualize the structure and organization of the brain is a fundamental requirement in the research of neuroscience. Here, combining with two-photon excitation fluorescence microscopy and transgenetic mouse GAD67,we demonstrate a custom-built second harmonic generation(SHG) microscope to discriminate brain layers and sub regions in the cerebellum and brain stem slices with cellular resolution. In particular, the cell densities of neurons in different brain layers are extracted due to the cell soma appearing as dark shadow on an SHG image.Further, the axon initial segments of the Purkinje cell are easily recognized without labeling, which would be useful for guiding micropipettes for electrophysiology.展开更多
The development of super-resolution technology has made it possible to investigate the ultrastructure of intracellular organelles by fuorescence microscopy,which has greatly facilitated the development of life science...The development of super-resolution technology has made it possible to investigate the ultrastructure of intracellular organelles by fuorescence microscopy,which has greatly facilitated the development of life sciences and biomedicine.To realize super-resolution imaging of living cells,both advanced imaging systems and excellent fuorescent probes are required.Traditional fuorescent probes have good availability,but that is not the case for probes for live-cell super-resolution imaging.In this review,we frst introduce the principles of various super-resolution technologies and their probe requirements,then summarize the existing designs and delivery strategies of super-resolution probes for live-cell imaging,and fnally provide a brief conclusion and overview of the future.展开更多
Multimodal imaging techniques have been demonstrated to be greatly advantageous in achieving accurate diagnosis and gained increasing attention in recent decades. Herein, we present a new strategy to integrate the com...Multimodal imaging techniques have been demonstrated to be greatly advantageous in achieving accurate diagnosis and gained increasing attention in recent decades. Herein, we present a new strategy to integrate the complementary modalities of I9F magnetic resonance imaging (19F MRI) and fluorescence imaging (FI) into a polymer nanoprobe composed of hydrophobic fluorescent organic core and hydrophilic fluorinated polymer shell. The alkyne-terminated fluorinated copolymer (Pn) of 2,2,2-trifluoroethyl acrylate (TFEA) and poly(ethylene glycol) methyl ether acrylate (PEGA) was first prepared vie atom transfer radical polymerization (ATRP). The PEGA plays an important role in both improving ^19F signal and modulating the hydrophilicity of Pn. The alkynyl tail in Pn is readily conjugated with azide modified tetra-phenylethylene (TPE) through click chemistry to form azo polymer (TPE-azo-Pn). The core-shell nanoprobes (TPE-P3N) with an average particle size of 57.2±8.8 nm are obtained via self-assembly with ultrasonication in aqueous solution. These nanoprobes demonstrate high water stability, good biocompatibility, strong fluorescence and good ^19F MRI performance, which present great potentials for simultaneous fluorescence imaging and ^19F-MR imaging.展开更多
基金supported by the National Key Research and Development Program of China(No.2016YFA0201403)the National Natural Science Foundation of China(No.61522502)the Science Fund for Creative Research Group of China(No.61421064)
文摘To visualize the structure and organization of the brain is a fundamental requirement in the research of neuroscience. Here, combining with two-photon excitation fluorescence microscopy and transgenetic mouse GAD67,we demonstrate a custom-built second harmonic generation(SHG) microscope to discriminate brain layers and sub regions in the cerebellum and brain stem slices with cellular resolution. In particular, the cell densities of neurons in different brain layers are extracted due to the cell soma appearing as dark shadow on an SHG image.Further, the axon initial segments of the Purkinje cell are easily recognized without labeling, which would be useful for guiding micropipettes for electrophysiology.
基金supported by the National Key Research and Development Program of China(No.2022YFC3401100)the National Natural Science Foundation of China(Grant Nos.32271428,92054110,and 32201132)China Postdoctoral Science Foundation funded project(Nos.BX20220125 and 2022M711257).
文摘The development of super-resolution technology has made it possible to investigate the ultrastructure of intracellular organelles by fuorescence microscopy,which has greatly facilitated the development of life sciences and biomedicine.To realize super-resolution imaging of living cells,both advanced imaging systems and excellent fuorescent probes are required.Traditional fuorescent probes have good availability,but that is not the case for probes for live-cell super-resolution imaging.In this review,we frst introduce the principles of various super-resolution technologies and their probe requirements,then summarize the existing designs and delivery strategies of super-resolution probes for live-cell imaging,and fnally provide a brief conclusion and overview of the future.
基金This research was supported Science Foundation of China 21675009), and the Fundamenta n part by the National Natural (Grant Nos. 21475007 and Research Funds for the Central Universities (buctrc201608 and buctrc201720).
文摘Multimodal imaging techniques have been demonstrated to be greatly advantageous in achieving accurate diagnosis and gained increasing attention in recent decades. Herein, we present a new strategy to integrate the complementary modalities of I9F magnetic resonance imaging (19F MRI) and fluorescence imaging (FI) into a polymer nanoprobe composed of hydrophobic fluorescent organic core and hydrophilic fluorinated polymer shell. The alkyne-terminated fluorinated copolymer (Pn) of 2,2,2-trifluoroethyl acrylate (TFEA) and poly(ethylene glycol) methyl ether acrylate (PEGA) was first prepared vie atom transfer radical polymerization (ATRP). The PEGA plays an important role in both improving ^19F signal and modulating the hydrophilicity of Pn. The alkynyl tail in Pn is readily conjugated with azide modified tetra-phenylethylene (TPE) through click chemistry to form azo polymer (TPE-azo-Pn). The core-shell nanoprobes (TPE-P3N) with an average particle size of 57.2±8.8 nm are obtained via self-assembly with ultrasonication in aqueous solution. These nanoprobes demonstrate high water stability, good biocompatibility, strong fluorescence and good ^19F MRI performance, which present great potentials for simultaneous fluorescence imaging and ^19F-MR imaging.