This review is focused on using computer image analysis as a means of objective and quantitative characterizing optical images of the macroscopic (e.g. microbial colonies) and the microscopic (e.g. single cell) object...This review is focused on using computer image analysis as a means of objective and quantitative characterizing optical images of the macroscopic (e.g. microbial colonies) and the microscopic (e.g. single cell) objects in the microbiological research. This is the way of making many visual inspection assays more objective and less time and labor consuming. Also, it can provide new visually inaccessible information on relation between some optical parameters and various biological features of the microbial cul-tures. Of special interest is application of image analysis in fluorescence microscopy as it opens new ways of using fluorescence based methodology for single microbial cell studies. Examples of using image analysis in the studies of both the macroscopic and the microscopic microbiological objects obtained by various imaging techniques are presented and discussed.展开更多
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized...Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.展开更多
For the sake of exploring how the pattern of Chinese pine (Pinus massoniana Lamb) community changed after the invasion of the pine wood nematode (Bursaphelenchus xylophilus (Steiner & Buhrer) Niclde) in Zhousha...For the sake of exploring how the pattern of Chinese pine (Pinus massoniana Lamb) community changed after the invasion of the pine wood nematode (Bursaphelenchus xylophilus (Steiner & Buhrer) Niclde) in Zhoushan, Zhejiang Province, we established a test area in the local Chinese pine community. Landsat5 TM images from 1991 and 2006 were integrated with auxiliary data from field investigation and spectral data as additional sources of information. A method of expert knowledge classifier was applied to establish the expert knowledge dataset of the main vegetation cover types from which we obtained a forest type distribution map. The spatial patterns and stability of the forest, before and after the invasion of the pine wood nematode, were analyzed in terms of community patterns. The results indicated that the predominant coniferous forest type changed to a mixed forest. As a result, the forest structure became complex and the interaction between coniferous forest patches became weakened over the period from 1991 to 2006. Therefore, the resistance of the forest eco-system to plant diseases and insect pests and the stability of forest eco-system enhanced.展开更多
In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. ...In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. The fuzzy clustering is applied to determining the key mass function, and dealing with the uncertain, incomplete and inconsistent measured imaging data in ERT. The proposed method was applied to images with the same investigated object under eight typical current drive patterns. Experiments were performed on a group of simulations using COMSOL Multiphysics tool and measurements with a piece of porcine lung and a pair of porcine kidneys as test materials. Compared with any single drive pattern, the proposed method can provide images with a spatial resolution of about 10% higher, while the time resolution was almost the same.展开更多
Identification of motor and sensory nerves is important in applications such as nerve injury repair.Conventional practice relies on time consuming staining methods for this purpose.Here,we use laser scanning infrared ...Identification of motor and sensory nerves is important in applications such as nerve injury repair.Conventional practice relies on time consuming staining methods for this purpose.Here,we use laser scanning infrared diferential interference contrast(IR-DIC)microscopy for label-free observation of the two types of nerve.Ventral and dorsal nerve roots of adult beagle dogs were collected and sections of different thicknesses were imaged with an IR-DIC microscope.Different texture patterns of the IR-DIC images of the motor and sensory nerve can be distinguished when the section thickness increases to 40 pm.This suggests that nerve fibers in motor and sensory nerves have different distribution patterns.The result hints a potential new way for more rapid identification of nerve type in peripheral nerve repair surgery.展开更多
In order to monitor dangerous areas in coal mines automatically,we propose to detect helmets from underground coal mine videos for detecting miners.This method can overcome the impact of similarity between the targets...In order to monitor dangerous areas in coal mines automatically,we propose to detect helmets from underground coal mine videos for detecting miners.This method can overcome the impact of similarity between the targets and their background.We constructed standard images of helmets,extracted four directional features,modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes.Out experimental results show that this method can detect helmets effectively.The detection rate was 83.7%.展开更多
文摘This review is focused on using computer image analysis as a means of objective and quantitative characterizing optical images of the macroscopic (e.g. microbial colonies) and the microscopic (e.g. single cell) objects in the microbiological research. This is the way of making many visual inspection assays more objective and less time and labor consuming. Also, it can provide new visually inaccessible information on relation between some optical parameters and various biological features of the microbial cul-tures. Of special interest is application of image analysis in fluorescence microscopy as it opens new ways of using fluorescence based methodology for single microbial cell studies. Examples of using image analysis in the studies of both the macroscopic and the microscopic microbiological objects obtained by various imaging techniques are presented and discussed.
基金supported by the National Natural Science Foundation of China,No.31070758,31271060the Natural Science Foundation of Chongqing in China,No.cstc2013jcyj A10085
文摘Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.
文摘For the sake of exploring how the pattern of Chinese pine (Pinus massoniana Lamb) community changed after the invasion of the pine wood nematode (Bursaphelenchus xylophilus (Steiner & Buhrer) Niclde) in Zhoushan, Zhejiang Province, we established a test area in the local Chinese pine community. Landsat5 TM images from 1991 and 2006 were integrated with auxiliary data from field investigation and spectral data as additional sources of information. A method of expert knowledge classifier was applied to establish the expert knowledge dataset of the main vegetation cover types from which we obtained a forest type distribution map. The spatial patterns and stability of the forest, before and after the invasion of the pine wood nematode, were analyzed in terms of community patterns. The results indicated that the predominant coniferous forest type changed to a mixed forest. As a result, the forest structure became complex and the interaction between coniferous forest patches became weakened over the period from 1991 to 2006. Therefore, the resistance of the forest eco-system to plant diseases and insect pests and the stability of forest eco-system enhanced.
基金Supported by National Natural Science Foundation of China(No.61774014 and No.60772080)
文摘In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. The fuzzy clustering is applied to determining the key mass function, and dealing with the uncertain, incomplete and inconsistent measured imaging data in ERT. The proposed method was applied to images with the same investigated object under eight typical current drive patterns. Experiments were performed on a group of simulations using COMSOL Multiphysics tool and measurements with a piece of porcine lung and a pair of porcine kidneys as test materials. Compared with any single drive pattern, the proposed method can provide images with a spatial resolution of about 10% higher, while the time resolution was almost the same.
基金supported by National Natural Science Foundation of China(Grant Nos.61475059,81371968,and 81401791).D.Chen,Y.WuandT.Sui contributed equally to this work.
文摘Identification of motor and sensory nerves is important in applications such as nerve injury repair.Conventional practice relies on time consuming staining methods for this purpose.Here,we use laser scanning infrared diferential interference contrast(IR-DIC)microscopy for label-free observation of the two types of nerve.Ventral and dorsal nerve roots of adult beagle dogs were collected and sections of different thicknesses were imaged with an IR-DIC microscope.Different texture patterns of the IR-DIC images of the motor and sensory nerve can be distinguished when the section thickness increases to 40 pm.This suggests that nerve fibers in motor and sensory nerves have different distribution patterns.The result hints a potential new way for more rapid identification of nerve type in peripheral nerve repair surgery.
基金provided by the National High Technology Research and Development Program of China (No.2008AA062202)
文摘In order to monitor dangerous areas in coal mines automatically,we propose to detect helmets from underground coal mine videos for detecting miners.This method can overcome the impact of similarity between the targets and their background.We constructed standard images of helmets,extracted four directional features,modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes.Out experimental results show that this method can detect helmets effectively.The detection rate was 83.7%.