The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small e...The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small ellipticity.However,one of the most significant challenges lies in ultra-long-distance data transmission,particularly for the Magnetic and Helioseismic Imager(MHI),which is the most important payload and generates the largest volume of data in SPO.In this paper,we propose a tailored lossless data compression method based on the measurement mode and characteristics of MHI data.The background out of the solar disk is removed to decrease the pixel number of an image under compression.Multiple predictive coding methods are combined to eliminate the redundancy utilizing the correlation(space,spectrum,and polarization)in data set,improving the compression ratio.Experimental results demonstrate that our method achieves an average compression ratio of 3.67.The compression time is also less than the general observation period.The method exhibits strong feasibility and can be easily adapted to MHI.展开更多
The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor l...The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.展开更多
Imaging methods are frequently used to diagnose gastrointestinal diseases and play a crucial role in verifying clinical diagnoses among all diagnostic algorithms.However,these methods have limitations,challenges,benef...Imaging methods are frequently used to diagnose gastrointestinal diseases and play a crucial role in verifying clinical diagnoses among all diagnostic algorithms.However,these methods have limitations,challenges,benefits,and advantages.Addressing these limitations requires the application of objective criteria to assess the effectiveness of each diagnostic method.The diagnostic process is dynamic and requires a consistent algorithm,progressing from clinical subjective data,such as patient history(anamnesis),and objective findings to diagnostics ex juvantibus.Caution must be exercised when interpreting diagnostic results,and there is an urgent need for better diagnostic tests.In the absence of such tests,preliminary criteria and a diagnosis ex juvantibus must be relied upon.Diagnostic imaging methods are critical stages in the diagnostic workflow,with sensitivity,specificity,and accuracy serving as the primary criteria for evaluating clinical,laboratory,and instrumental symptoms.A comprehensive evaluation of all available diagnostic data guarantees an accurate diagnosis.The“gold standard”for diagnosis is typically established through either the results of a pathological autopsy or a lifetime diagnosis resulting from a thorough examination using all diagnostic methods.展开更多
Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly ...Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly important. Taking the Daquekou section of the Qiantang River as an observation target, four conventional fusion methods widely accepted in satellite image processing, including pan sharpening(PS), principal component analysis(PCA), Gram-Schmidt(GS), and wavelet fusion(WF), are utilized to fuse MS and PAN images of GF-1.The results of subjective and objective evaluation methods application indicate that GS performs the best,followed by the PCA, the WF and the PS in the order of descending. The existence of a large area of the water body is a dominant factor impacting the fusion performance. Meanwhile, the ability of retaining spatial and spectral informations is an important factor affecting the fusion performance of different fusion methods. The fundamental difference of reflectivity information acquisition between water and land is the reason for the failure of conventional fusion methods for land observation such as the PS to be used in the presence of the large water body. It is suggested that the adoption of the conventional fusion methods in the observing water body as the main target should be taken with caution. The performances of the fusion methods need re-assessment when the large-scale water body is present in the remote sensing image or when the research aims for the water body observation.展开更多
In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a...In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.展开更多
As the key technology of extracting remote sensing information,the classification of remote sensing images has always been the research focus in the field of remote sensing. The paper introduces the classification pro...As the key technology of extracting remote sensing information,the classification of remote sensing images has always been the research focus in the field of remote sensing. The paper introduces the classification process and system of remote sensing images. According to the recent research status of domestic and international remote sensing classification methods,the new study dynamics of remote sensing classification,such as artificial neural networks,support vector machine,active learning and ensemble multi-classifiers,were introduced,providing references for the automatic and intelligent development of remote sensing images classification.展开更多
Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image...Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image.In this paper,we consider a class of convex and edge-preserving regularization functions,i.e.,multiplicative half-quadratic regularizations,and we use the Newton method to solve the correspondingly reduced systems of nonlinear equations.At each Newton iterate,the preconditioned conjugate gradient method,incorporated with a constraint preconditioner,is employed to solve the structured Newton equation that has a symmetric positive definite coefficient matrix. The eigenvalue bounds of the preconditioned matrix are deliberately derived,which can be used to estimate the convergence speed of the preconditioned conjugate gradient method.We use experimental results to demonstrate that this new approach is efficient, and the effect of image restoration is reasonably well.展开更多
Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intole...Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intolerably alter inherent features of MR images.Drastic changes in brightness features,induced by post-processing are not appreciated in medical imaging as the grey level values have certain diagnostic meanings.To overcome these issues this paper proposes an algorithm that enhance the contrast of MR images while preserving the underlying features as well.This method termed as Power-law and Logarithmic Modification-based Histogram Equalization(PLMHE)partitions the histogram of the image into two sub histograms after a power-law transformation and a log compression.After a modification intended for improving the dispersion of the sub-histograms and subsequent normalization,cumulative histograms are computed.Enhanced grey level values are computed from the resultant cumulative histograms.The performance of the PLMHE algorithm is comparedwith traditional histogram equalization based algorithms and it has been observed from the results that PLMHE can boost the image contrast without causing dynamic range compression,a significant change in mean brightness,and contrast-overshoot.展开更多
In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often distur...In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images展开更多
We conducted a study on the numerical calculation and response analysis of a transient electromagnetic field generated by a ground source in geological media. One solution method, the traditional discrete image method...We conducted a study on the numerical calculation and response analysis of a transient electromagnetic field generated by a ground source in geological media. One solution method, the traditional discrete image method, involves complex operation, and its digital filtering algorithm requires a large number of calculations. To solve these problems, we proposed an improved discrete image method, where the following are realized: the real number of the electromagnetic field solution based on the Gaver-Stehfest algorithm for approximate inversion, the exponential approximation of the objective kernel function using the Prony method, the transient electromagnetic field according to discrete image theory, and closed-form solution of the approximate coefficients. To verify the method, we tentatively calculated the transient electromagnetic field in a homogeneous model and compared it with the results obtained from the Hankel transform digital filtering method. The results show that the method has considerable accuracy and good applicability. We then used this method to calculate the transient electromagnetic field generated by a ground magnetic dipole source in a typical geoelectric model and analyzed the horizontal component response of the induced magnetic field obtained from the "ground excitation-stratum measurement method. We reached the conclusion that the horizontal component response of a transient field is related to the geoelectric structure, observation time, spatial location, and others. The horizontal component response of the induced magnetic field reflects the eddy current field distribution and its vertical gradient variation. During the detection of abnormal objects, positions with a zero or comparatively large offset were selected for the drill- hole measurements or a comparatively long observation delay was adopted to reduce the influence of the ambient field on the survey results. The discrete image method and forward calculation results in this paper can be used as references for relevant research.展开更多
A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne...A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in prac...Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.展开更多
Fused deposition modelling(FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials ...Fused deposition modelling(FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials is proposed. First of all, according to the manufacturing process of FDM, orthotropic constitutive model is used to describe the mechanical behavior. Then the virtual fields method(VFM) is applied to characterize all the mechanical parameters(Q, Q, Q, Q) using the full-field strain,which is measured by digital image correlation(DIC). Since the principal axis of the FDM-fabricated structure is sometimes unknown due to the complexity of the manufacturing process, a disk in diametrical compression is used as the load configuration so that the loading angle can be changed conveniently. To verify the feasibility of the proposed method, finite element method(FEM) simulation is conducted to obtain the strain field of the disk. The simulation results show that higher accuracy can be achieved when the loading angle is close to 30?. Finally, a disk fabricated by FDM was used for the experiment. By rotating the disk, several tests with different loading angles were conducted. To determine the position of the principal axis in each test, two groups of parameters(Q, Q, Q, Q) are calculated by two different groups of virtual fields. Then the corresponding loading angle can be determined by minimizing the deviation between two groups of the parameters. After that, the four constants(Q, Q, Q, Q) were determined from the test with an angle of 27?.展开更多
This paper proposes a new image restoration technique, in which the resulting regularized image approximates the optimal solution steadily. The affect of the regular-ization operator and parameter on the lower band an...This paper proposes a new image restoration technique, in which the resulting regularized image approximates the optimal solution steadily. The affect of the regular-ization operator and parameter on the lower band and upper band energy of the residue of the regularized image is theoretically analyzed by employing wavelet transform. This paper shows that regularization operator should generally be lowstop and highpass. So this paper chooses a lowstop and highpass operator as regularization operator, and construct an optimization model which minimizes the mean squares residue of regularized solution to determine regularization parameter. Although the model is random, on the condition of this paper, it can be solved and yields regularization parameter and regularized solution. Otherwise, the technique has a mechanism to predict noise energy. So, without noise information, it can also work and yield good restoration results.展开更多
Obtaining high precision is an important consideration for astrometric studies using images from the Narrow Angle Camera(NAC)of the Cassini Imaging Science Subsystem(ISS).Selecting the best centering algorithm is key ...Obtaining high precision is an important consideration for astrometric studies using images from the Narrow Angle Camera(NAC)of the Cassini Imaging Science Subsystem(ISS).Selecting the best centering algorithm is key to enhancing astrometric accuracy.In this study,we compared the accuracy of five centering algorithms:Gaussian fitting,the modified moments method,and three point-spread function(PSF)fitting methods(effective PSF(ePSF),PSFEx,and extended PSF(x PSF)from the Cassini Imaging Central Laboratory for Operations(CICLOPS)).We assessed these algorithms using 70 ISS NAC star field images taken with CL1 and CL2 filters across different stellar magnitudes.The ePSF method consistently demonstrated the highest accuracy,achieving precision below 0.03 pixels for stars of magnitude 8-9.Compared to the previously considered best,the modified moments method,the e PSF method improved overall accuracy by about 10%and 21%in the sample and line directions,respectively.Surprisingly,the xPSF model provided by CICLOPS had lower precision than the ePSF.Conversely,the ePSF exhibits an improvement in measurement precision of 23%and 17%in the sample and line directions,respectively,over the xPSF.This discrepancy might be attributed to the xPSF focusing on photometry rather than astrometry.These findings highlight the necessity of constructing PSF models specifically tailored for astrometric purposes in NAC images and provide guidance for enhancing astrometric measurements using these ISS NAC images.展开更多
Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motiva...Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well.展开更多
The visible and infrared bands of Landsat Thematic Mapper (TM) can be used for inland water studies. A method of retrieving water-leaving radiance from TM image over Taihu Lake in Jiangsu Province of China was inves...The visible and infrared bands of Landsat Thematic Mapper (TM) can be used for inland water studies. A method of retrieving water-leaving radiance from TM image over Taihu Lake in Jiangsu Province of China was investigated in this article. To estimate water-leaving radiance, atmospheric correction was performed in three visible bands of 485nm, 560nm and 660rim. Rayleigh scattering was computed precisely, and the aerosol contribution was estimated by adopting the clear-water-pixels approach. The clear waters were identified by using the Landsat TM middle-infrared band (2.1 μm), and the water-leaving radiance of clear water pixels in the green band was estimated by using field data. Aerosol scattering at green band was derived for six points, and interpolated to match the TM image. Assuming the atmospheric correction coefficient was 1.0, the aerosol scattering image at blue and red bands were derived. Based on a simplified atmospheric radiation transfer model, the water-leaving radiance for three visible bands was retrieved. The water-leaving radiance was normalized to make it comparable with that estimated from other remotely sensed data acquired at different times, and under different atmospheric conditions. Additionally, remotely sensed reflectance of water was computed. To evaluate the atmospheric correction method presented in this article, the correlation was analyzed between the corrected remotely sensed data and the measured water parameters based on the retrieval model. The results show that the atmospheric correction method based on the image itself is more effective for the retrieval of water parameters from Landsat TM data than 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) code based on standard atmospheric and aerosol models.展开更多
In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second...In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model.展开更多
This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(...This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.展开更多
基金supported by the National Key R&D Program of China(grant No.2022YFF0503800)by the National Natural Science Foundation of China(NSFC)(grant No.11427901)+1 种基金by the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS-SPP)(grant No.XDA15320102)by the Youth Innovation Promotion Association(CAS No.2022057)。
文摘The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small ellipticity.However,one of the most significant challenges lies in ultra-long-distance data transmission,particularly for the Magnetic and Helioseismic Imager(MHI),which is the most important payload and generates the largest volume of data in SPO.In this paper,we propose a tailored lossless data compression method based on the measurement mode and characteristics of MHI data.The background out of the solar disk is removed to decrease the pixel number of an image under compression.Multiple predictive coding methods are combined to eliminate the redundancy utilizing the correlation(space,spectrum,and polarization)in data set,improving the compression ratio.Experimental results demonstrate that our method achieves an average compression ratio of 3.67.The compression time is also less than the general observation period.The method exhibits strong feasibility and can be easily adapted to MHI.
文摘The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.
文摘Imaging methods are frequently used to diagnose gastrointestinal diseases and play a crucial role in verifying clinical diagnoses among all diagnostic algorithms.However,these methods have limitations,challenges,benefits,and advantages.Addressing these limitations requires the application of objective criteria to assess the effectiveness of each diagnostic method.The diagnostic process is dynamic and requires a consistent algorithm,progressing from clinical subjective data,such as patient history(anamnesis),and objective findings to diagnostics ex juvantibus.Caution must be exercised when interpreting diagnostic results,and there is an urgent need for better diagnostic tests.In the absence of such tests,preliminary criteria and a diagnosis ex juvantibus must be relied upon.Diagnostic imaging methods are critical stages in the diagnostic workflow,with sensitivity,specificity,and accuracy serving as the primary criteria for evaluating clinical,laboratory,and instrumental symptoms.A comprehensive evaluation of all available diagnostic data guarantees an accurate diagnosis.The“gold standard”for diagnosis is typically established through either the results of a pathological autopsy or a lifetime diagnosis resulting from a thorough examination using all diagnostic methods.
基金The National Key Research and Development Program of China under contract Nos 2016YFC1400901 and 2018YFC1406600the National Natural Science Foundation of China under contract No.40706057+1 种基金the Environmental Protection and Science and Technology Plan Project of Zhejiang Province of China under contract No.2013A021the Research Center for Air Pollution and Health of Zhejiang University
文摘Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly important. Taking the Daquekou section of the Qiantang River as an observation target, four conventional fusion methods widely accepted in satellite image processing, including pan sharpening(PS), principal component analysis(PCA), Gram-Schmidt(GS), and wavelet fusion(WF), are utilized to fuse MS and PAN images of GF-1.The results of subjective and objective evaluation methods application indicate that GS performs the best,followed by the PCA, the WF and the PS in the order of descending. The existence of a large area of the water body is a dominant factor impacting the fusion performance. Meanwhile, the ability of retaining spatial and spectral informations is an important factor affecting the fusion performance of different fusion methods. The fundamental difference of reflectivity information acquisition between water and land is the reason for the failure of conventional fusion methods for land observation such as the PS to be used in the presence of the large water body. It is suggested that the adoption of the conventional fusion methods in the observing water body as the main target should be taken with caution. The performances of the fusion methods need re-assessment when the large-scale water body is present in the remote sensing image or when the research aims for the water body observation.
基金supported by the National Key R&D Program of China(2017YFF0205600)the International Research Cooperation Seed Fund of Beijing University of Technology(2018A08)+1 种基金Science and Technology Project of Beijing Municipal Commission of Transport(2018-kjc-01-213)the Construction of Service Capability of Scientific and Technological Innovation-Municipal Level of Fundamental Research Funds(Scientific Research Categories)of Beijing City(PXM2019_014204_500032).
文摘In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.
基金Supported by the Science Research Foundation(2010Y290) of Yunnan Department of Education
文摘As the key technology of extracting remote sensing information,the classification of remote sensing images has always been the research focus in the field of remote sensing. The paper introduces the classification process and system of remote sensing images. According to the recent research status of domestic and international remote sensing classification methods,the new study dynamics of remote sensing classification,such as artificial neural networks,support vector machine,active learning and ensemble multi-classifiers,were introduced,providing references for the automatic and intelligent development of remote sensing images classification.
基金supported by the National Basic Research Program (No.2005CB321702)the National Outstanding Young Scientist Foundation(No. 10525102)the Specialized Research Grant for High Educational Doctoral Program(Nos. 20090211120011 and LZULL200909),Hong Kong RGC grants and HKBU FRGs
文摘Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image.In this paper,we consider a class of convex and edge-preserving regularization functions,i.e.,multiplicative half-quadratic regularizations,and we use the Newton method to solve the correspondingly reduced systems of nonlinear equations.At each Newton iterate,the preconditioned conjugate gradient method,incorporated with a constraint preconditioner,is employed to solve the structured Newton equation that has a symmetric positive definite coefficient matrix. The eigenvalue bounds of the preconditioned matrix are deliberately derived,which can be used to estimate the convergence speed of the preconditioned conjugate gradient method.We use experimental results to demonstrate that this new approach is efficient, and the effect of image restoration is reasonably well.
基金This work was supported by Taif university Researchers Supporting Project Number(TURSP-2020/114),Taif University,Taif,Saudi Arabia.
文摘Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intolerably alter inherent features of MR images.Drastic changes in brightness features,induced by post-processing are not appreciated in medical imaging as the grey level values have certain diagnostic meanings.To overcome these issues this paper proposes an algorithm that enhance the contrast of MR images while preserving the underlying features as well.This method termed as Power-law and Logarithmic Modification-based Histogram Equalization(PLMHE)partitions the histogram of the image into two sub histograms after a power-law transformation and a log compression.After a modification intended for improving the dispersion of the sub-histograms and subsequent normalization,cumulative histograms are computed.Enhanced grey level values are computed from the resultant cumulative histograms.The performance of the PLMHE algorithm is comparedwith traditional histogram equalization based algorithms and it has been observed from the results that PLMHE can boost the image contrast without causing dynamic range compression,a significant change in mean brightness,and contrast-overshoot.
基金Supported by the National Basic Research Program of China ("973"Program)(2006CB601201)~~
文摘In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Geological survey project of China Geological Survey(No.12120114090201)
文摘We conducted a study on the numerical calculation and response analysis of a transient electromagnetic field generated by a ground source in geological media. One solution method, the traditional discrete image method, involves complex operation, and its digital filtering algorithm requires a large number of calculations. To solve these problems, we proposed an improved discrete image method, where the following are realized: the real number of the electromagnetic field solution based on the Gaver-Stehfest algorithm for approximate inversion, the exponential approximation of the objective kernel function using the Prony method, the transient electromagnetic field according to discrete image theory, and closed-form solution of the approximate coefficients. To verify the method, we tentatively calculated the transient electromagnetic field in a homogeneous model and compared it with the results obtained from the Hankel transform digital filtering method. The results show that the method has considerable accuracy and good applicability. We then used this method to calculate the transient electromagnetic field generated by a ground magnetic dipole source in a typical geoelectric model and analyzed the horizontal component response of the induced magnetic field obtained from the "ground excitation-stratum measurement method. We reached the conclusion that the horizontal component response of a transient field is related to the geoelectric structure, observation time, spatial location, and others. The horizontal component response of the induced magnetic field reflects the eddy current field distribution and its vertical gradient variation. During the detection of abnormal objects, positions with a zero or comparatively large offset were selected for the drill- hole measurements or a comparatively long observation delay was adopted to reduce the influence of the ambient field on the survey results. The discrete image method and forward calculation results in this paper can be used as references for relevant research.
基金The National Natural Science Foundation of China (No.61362001,61102043,61262084,20132BAB211030,20122BAB211015)the Basic Research Program of Shenzhen(No.JC201104220219A)
文摘A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金the National High Technology Research and Development Program of China(Grant No.2012AA011603)
文摘Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.
基金the financial support from the National Natural Science Foundation of China (Grants 11672153, 11232008, and 11227801)
文摘Fused deposition modelling(FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials is proposed. First of all, according to the manufacturing process of FDM, orthotropic constitutive model is used to describe the mechanical behavior. Then the virtual fields method(VFM) is applied to characterize all the mechanical parameters(Q, Q, Q, Q) using the full-field strain,which is measured by digital image correlation(DIC). Since the principal axis of the FDM-fabricated structure is sometimes unknown due to the complexity of the manufacturing process, a disk in diametrical compression is used as the load configuration so that the loading angle can be changed conveniently. To verify the feasibility of the proposed method, finite element method(FEM) simulation is conducted to obtain the strain field of the disk. The simulation results show that higher accuracy can be achieved when the loading angle is close to 30?. Finally, a disk fabricated by FDM was used for the experiment. By rotating the disk, several tests with different loading angles were conducted. To determine the position of the principal axis in each test, two groups of parameters(Q, Q, Q, Q) are calculated by two different groups of virtual fields. Then the corresponding loading angle can be determined by minimizing the deviation between two groups of the parameters. After that, the four constants(Q, Q, Q, Q) were determined from the test with an angle of 27?.
基金This work was supported by the National Natural Science Foundation of China(60204001, 60133010)the Scientific Research Fundation of Hunan Provincial Education Department(02C640)the Youth Chengguang Project of Science and Technology of Wuhan City(
文摘This paper proposes a new image restoration technique, in which the resulting regularized image approximates the optimal solution steadily. The affect of the regular-ization operator and parameter on the lower band and upper band energy of the residue of the regularized image is theoretically analyzed by employing wavelet transform. This paper shows that regularization operator should generally be lowstop and highpass. So this paper chooses a lowstop and highpass operator as regularization operator, and construct an optimization model which minimizes the mean squares residue of regularized solution to determine regularization parameter. Although the model is random, on the condition of this paper, it can be solved and yields regularization parameter and regularized solution. Otherwise, the technique has a mechanism to predict noise energy. So, without noise information, it can also work and yield good restoration results.
基金supported by the National Natural Science Foundation of China(No.12373073,U2031104,No.12173015)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011340)。
文摘Obtaining high precision is an important consideration for astrometric studies using images from the Narrow Angle Camera(NAC)of the Cassini Imaging Science Subsystem(ISS).Selecting the best centering algorithm is key to enhancing astrometric accuracy.In this study,we compared the accuracy of five centering algorithms:Gaussian fitting,the modified moments method,and three point-spread function(PSF)fitting methods(effective PSF(ePSF),PSFEx,and extended PSF(x PSF)from the Cassini Imaging Central Laboratory for Operations(CICLOPS)).We assessed these algorithms using 70 ISS NAC star field images taken with CL1 and CL2 filters across different stellar magnitudes.The ePSF method consistently demonstrated the highest accuracy,achieving precision below 0.03 pixels for stars of magnitude 8-9.Compared to the previously considered best,the modified moments method,the e PSF method improved overall accuracy by about 10%and 21%in the sample and line directions,respectively.Surprisingly,the xPSF model provided by CICLOPS had lower precision than the ePSF.Conversely,the ePSF exhibits an improvement in measurement precision of 23%and 17%in the sample and line directions,respectively,over the xPSF.This discrepancy might be attributed to the xPSF focusing on photometry rather than astrometry.These findings highlight the necessity of constructing PSF models specifically tailored for astrometric purposes in NAC images and provide guidance for enhancing astrometric measurements using these ISS NAC images.
文摘Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well.
基金Under the auspices of National Natural Science Foundation of China (No. 40671138)
文摘The visible and infrared bands of Landsat Thematic Mapper (TM) can be used for inland water studies. A method of retrieving water-leaving radiance from TM image over Taihu Lake in Jiangsu Province of China was investigated in this article. To estimate water-leaving radiance, atmospheric correction was performed in three visible bands of 485nm, 560nm and 660rim. Rayleigh scattering was computed precisely, and the aerosol contribution was estimated by adopting the clear-water-pixels approach. The clear waters were identified by using the Landsat TM middle-infrared band (2.1 μm), and the water-leaving radiance of clear water pixels in the green band was estimated by using field data. Aerosol scattering at green band was derived for six points, and interpolated to match the TM image. Assuming the atmospheric correction coefficient was 1.0, the aerosol scattering image at blue and red bands were derived. Based on a simplified atmospheric radiation transfer model, the water-leaving radiance for three visible bands was retrieved. The water-leaving radiance was normalized to make it comparable with that estimated from other remotely sensed data acquired at different times, and under different atmospheric conditions. Additionally, remotely sensed reflectance of water was computed. To evaluate the atmospheric correction method presented in this article, the correlation was analyzed between the corrected remotely sensed data and the measured water parameters based on the retrieval model. The results show that the atmospheric correction method based on the image itself is more effective for the retrieval of water parameters from Landsat TM data than 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) code based on standard atmospheric and aerosol models.
文摘In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model.
基金This research was supported by the Department of Mining Engineering at the University of Utah.In addition,the lead author wishes to acknowledge the financial support received from the Talent Introduction Project,part of the Elite Program of Shandong University of Science and Technology(No.0104060540171).
文摘This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.