期刊文献+
共找到4,905篇文章
< 1 2 246 >
每页显示 20 50 100
Pre-training transformer with dual-branch context content module for table detection in document images
1
作者 Yongzhi LI Pengle ZHANG +2 位作者 Meng SUN Jin HUANG Ruhan HE 《虚拟现实与智能硬件(中英文)》 EI 2024年第5期408-420,共13页
Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such... Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction.However,because of the diversity in the shapes and sizes of tables,existing table detection methods adapted from general object detection algorithms,have not yet achieved satisfactory results.Incorrect detection results might lead to the loss of critical information.Methods Therefore,we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections.To better deal with table areas of different shapes and sizes,we added a dualbranch context content attention module(DCCAM)to high-dimensional features to extract context content information,thereby enhancing the network's ability to learn shape features.For feature fusion at different scales,we replaced the original 3×3 convolution with a multilayer residual module,which contains enhanced gradient flow information to improve the feature representation and extraction capability.Results We evaluated our method on public document datasets and compared it with previous methods,which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score.https://github.com/Yong Z-Lee/TD-DCCAM. 展开更多
关键词 Table detection document image analysis TRANSFORMER Dilated convolution Deformable convolution Feature fusion
下载PDF
Damage detection with image processing: a comparative study 被引量:2
2
作者 Marianna Crognale Melissa De Iuliis +1 位作者 Cecilia Rinaldi Vincenzo Gattulli 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第2期333-345,共13页
Large structures,such as bridges,highways,etc.,need to be inspected to evaluate their actual physical and functional condition,to predict future conditions,and to help decision makers allocating maintenance and rehabi... Large structures,such as bridges,highways,etc.,need to be inspected to evaluate their actual physical and functional condition,to predict future conditions,and to help decision makers allocating maintenance and rehabilitation resources.The assessment of civil infrastructure condition is carried out through information obtained by inspection and/or monitoring operations.Traditional techniques in structural health monitoring(SHM)involve visual inspection related to inspection standards that can be time-consuming data collection,expensive,labor intensive,and dangerous.To address these limitations,machine vision-based inspection procedures have increasingly been investigated within the research community.In this context,this paper proposes and compares four different computer vision procedures to identify damage by image processing:Otsu method thresholding,Markov random fields segmentation,RGB color detection technique,and K-means clustering algorithm.The first method is based on segmentation by thresholding that returns a binary image from a grayscale image.The Markov random fields technique uses a probabilistic approach to assign labels to model the spatial dependencies in image pixels.The RGB technique uses color detection to evaluate the defect extensions.Finally,K-means algorithm is based on Euclidean distance for clustering of the images.The benefits and limitations of each technique are discussed,and the challenges of using the techniques are highlighted.To show the effectiveness of the described techniques in damage detection of civil infrastructures,a case study is presented.Results show that various types of corrosion and cracks can be detected by image processing techniques making the proposed techniques a suitable tool for the prediction of the damage evolution in civil infrastructures. 展开更多
关键词 damage detection image processing image classification civil infrastructure inspection structural health monitoring analysis
下载PDF
Automatic recognition of defects in plasma-facing material using image processing technology
3
作者 吕建骅 牛春杰 +3 位作者 崔运秋 陈超 倪维元 范红玉 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第12期122-130,共9页
Observing and analyzing surface images is critical for studying the interaction between plasma and irradiated plasma-facing materials.This paper presents a method for the automatic recognition of bubbles in transmissi... Observing and analyzing surface images is critical for studying the interaction between plasma and irradiated plasma-facing materials.This paper presents a method for the automatic recognition of bubbles in transmission electron microscope(TEM)images of W nanofibers using image processing techniques and convolutional neural network(CNN).We employ a three-stage approach consisting of Otsu,local-threshold,and watershed segmentation to extract bubbles from noisy images.To address over-segmentation,we propose a combination of area factor and radial pixel intensity scanning.A CNN is used to recognize bubbles,outperforming traditional neural network models such as Alex Net and Google Net with an accuracy of 97.1%and recall of 98.6%.Our method is tested on both clear and blurred TEM images,and demonstrates humanlike performance in recognizing bubbles.This work contributes to the development of quantitative image analysis in the field of plasma-material interactions,offering a scalable solution for analyzing material defects.Overall,this study's findings establish the potential for automatic defect recognition and its applications in the assessment of plasma-material interactions.This method can be employed in a variety of specialties,including plasma physics and materials science. 展开更多
关键词 image processing automatic defect analysis object detection convolutional neural network
下载PDF
Real-time image processing and display in object size detection based on VC++ 被引量:2
4
作者 翟亚宇 潘晋孝 +1 位作者 刘宾 陈平 《Journal of Measurement Science and Instrumentation》 CAS 2014年第4期40-45,共6页
Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie... Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs. 展开更多
关键词 size detection real-time image processing and display gain calibration edge fitting
下载PDF
Automated detection and identification of white-backed planthoppers in paddy fields using image processing 被引量:14
5
作者 YAO Qing CHEN Guo-te +3 位作者 WANG Zheng ZHANG Chao YANG Bao-jun TANG Jian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第7期1547-1557,共11页
A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective.... A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields. 展开更多
关键词 white-backed planthopper developmental stage automated detection and identification image processing histogram of oriented gradient features gabor features local binary pattern features
下载PDF
Research of the image processing in dynamic flatness detection based on improved laser triangular method 被引量:1
6
作者 徐宏喆 刘凯 +2 位作者 彭晓晖 李盼 李越 《Journal of Pharmaceutical Analysis》 SCIE CAS 2008年第3期168-171,共4页
As a commonly used non-contact flatness detection method, laser triangular detection method is designed with low cost, but it cannot avoid measurement errors caused by strip steel vibration effectively. This paper put... As a commonly used non-contact flatness detection method, laser triangular detection method is designed with low cost, but it cannot avoid measurement errors caused by strip steel vibration effectively. This paper puts forward a dynamic flatness image processing method based on improved laser triangular detection method. According to the practical application of strip steel straightening, it completes the image pre-processing, image feature curve extraction and calculation of flatness elongation using digital image processing technology. Finally it eliminates elongation measurement errors caused by the vibration. 展开更多
关键词 flatness detection image processing elongation calculation
下载PDF
An Optimized and Hybrid Framework for Image Processing Based Network Intrusion Detection System
7
作者 Murtaza Ahmed Siddiqi Wooguil Pak 《Computers, Materials & Continua》 SCIE EI 2022年第11期3921-3949,共29页
The network infrastructure has evolved rapidly due to the everincreasing volume of users and data.The massive number of online devices and users has forced the network to transform and facilitate the operational neces... The network infrastructure has evolved rapidly due to the everincreasing volume of users and data.The massive number of online devices and users has forced the network to transform and facilitate the operational necessities of consumers.Among these necessities,network security is of prime significance.Network intrusion detection systems(NIDS)are among the most suitable approaches to detect anomalies and assaults on a network.However,keeping up with the network security requirements is quite challenging due to the constant mutation in attack patterns by the intruders.This paper presents an effective and prevalent framework for NIDS by merging image processing with convolution neural networks(CNN).The proposed framework first converts non-image data from network traffic into images and then further enhances those images by using the Gabor filter.The images are then classified using a CNN classifier.To assess the efficacy of the recommended method,four benchmark datasets i.e.,CSE-CIC-IDS2018,CIC-IDS-2017,ISCX-IDS 2012,and NSL-KDD were used.The proposed approach showed higher precision in contrast with the recent work on the mentioned datasets.Further,the proposed method is compared with the recent well-known image processing methods for NIDS. 展开更多
关键词 Anomaly detection convolution neural networks deep learning image processing intrusion detection network intrusion detection
下载PDF
Computer Vision Technology for Fault Detection Systems Using Image Processing
8
作者 Abed Saif Alghawli 《Computers, Materials & Continua》 SCIE EI 2022年第10期1961-1976,共16页
In the period of Industries 4.0,cyber-physical systems(CPSs)were a major study area.Such systems frequently occur in manufacturing processes and people’s everyday lives,and they communicate intensely among physical e... In the period of Industries 4.0,cyber-physical systems(CPSs)were a major study area.Such systems frequently occur in manufacturing processes and people’s everyday lives,and they communicate intensely among physical elements and lead to inconsistency.Due to the magnitude and importance of the systems they support,the cyber quantum models must function effectively.In this paper,an image-processing-based anomalous mobility detecting approach is suggested that may be added to systems at any time.The expense of glitches,failures or destroyed products is decreased when anomalous activities are detected and unplanned scenarios are avoided.The presently offered techniques are not well suited to these operations,which necessitate information systems for issue treatment and classification at a degree of complexity that is distinct from technology.To overcome such challenges in industrial cyber-physical systems,the Image Processing aided Computer Vision Technology for Fault Detection System(IM-CVFD)is proposed in this research.The Uncertainty Management technique is introduced in addition to achieving optimum knowledge in terms of latency and effectiveness.A thorough simulation was performed in an appropriate processing facility.The study results suggest that the IM-CVFD has a high performance,low error frequency,low energy consumption,and low delay with a strategy that provides.In comparison to traditional approaches,the IM-CVFD produces a more efficient outcome. 展开更多
关键词 Cyber-physical system image processing computer vision fault detection
下载PDF
Edge detection of potential field data based on image processing methods 被引量:2
9
作者 TAN Xiaodi ZHANG Dailei MA Guoqing 《Global Geology》 2018年第2期134-142,共9页
The conventional methods of edge detection can roughly delineate edge position of geological bodies,but there are still some problems such as low detection accuracy and being susceptible to noise interference.In this ... The conventional methods of edge detection can roughly delineate edge position of geological bodies,but there are still some problems such as low detection accuracy and being susceptible to noise interference.In this paper,three image processing methods,Canny,Lo G and Sobel operators are briefly introduced,and applied to edge detection to determine the edge of geological bodies.Furthermore,model data is built to analyze the edge detection ability of this image processing methods,and compare with conventional methods.Combined with gravity anomaly of Sichuan basin and magnetic anomaly of Zhurihe area,the detection effect of image processing methods is further verified in real data.The results show that image processing methods can be applied to effectively identify the edge of geological bodies.Moreover,when both positive and negative anomalies exist and noise is abundant,fake edge can be avoided and edge division is clearer,and satisfactory results of edge detection are obtained. 展开更多
关键词 EDGE detection image processing CANNY OPERATOR LOG OPERATOR SOBEL OPERATOR
下载PDF
Novel welding image processing method based on fractal theory 被引量:2
10
作者 陈强 孙振国 +1 位作者 肖勇 路井荣 《China Welding》 EI CAS 2002年第2期95-99,共5页
Computer vision has come into used in the fields of welding process control and automation. In order to improve precision and rapidity of welding image processing, a novel method based on fractal theory has been put f... Computer vision has come into used in the fields of welding process control and automation. In order to improve precision and rapidity of welding image processing, a novel method based on fractal theory has been put forward in this paper. Compared with traditional methods, the image is preliminarily processed in the macroscopic regions then thoroughly analyzed in the microscopic regions in the new method. With which, an image is divided up to some regions according to the different fractal characters of image edge, and the fuzzy regions including image edges are detected out, then image edges are identified with Sobel operator and curved by LSM (Lease Square Method). Since the data to be processed have been decreased and the noise of image has been reduced, it has been testified through experiments that edges of weld seam or weld pool could be recognized correctly and quickly. 展开更多
关键词 fractal theory welding image processing edge detection
下载PDF
Study on the image processing of laser vision seam tracking system 被引量:1
11
作者 申俊琦 胡绳荪 +1 位作者 冯胜强 朱莉娜 《China Welding》 EI CAS 2010年第2期47-50,共4页
Seam image processing is the basis of the realization of automatic laser vision seam tracking system, and it has become one of the important research directions. Adding windows processing, gray processing, fast median... Seam image processing is the basis of the realization of automatic laser vision seam tracking system, and it has become one of the important research directions. Adding windows processing, gray processing, fast median filtering, binary processing and image edge extraction are used to pretreat the seam image. In the post-processing of seam image, the feature points of the target image are succesfully detected by using center line extraction and feature points detection algorithm based on slope analysis. The whole processing time is less than 150 ms, and the real-time processing of seam image can be implemented. 展开更多
关键词 image processing seam tracking laser vision feature points detection
下载PDF
APPLICATION OF MVP IN REAL TIME IMAGE PROCESSING
12
作者 戴擎宇 杨占昕 何佩琨 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2000年第1期30-33,共4页
MVP is a digital signal processor, which is of MIMD structure and fit for multimedia application. MVP has several processors in it, and its operation is characteristic of parallelism and pipeline; therefore, real-time... MVP is a digital signal processor, which is of MIMD structure and fit for multimedia application. MVP has several processors in it, and its operation is characteristic of parallelism and pipeline; therefore, real-time signal processing can be done on it. This paper presents the image processing system based on MVP, explains the principles of parallel task assignment and hardware pipeline design, and gives out the example of target tracking and edge detection. 展开更多
关键词 Computer hardware Edge detection image processing MIM devices Multimedia systems Parallel processing systems Random access storage
下载PDF
Techniques of Image Processing Based on Artificial Neural Networks
13
作者 李伟青 王群 王成彪 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期20-24,共5页
This paper presented an online quality inspection system based on artificial neural networks. Chromatism classification and edge detection are two difficult problems in glass steel surface quality inspection. Two arti... This paper presented an online quality inspection system based on artificial neural networks. Chromatism classification and edge detection are two difficult problems in glass steel surface quality inspection. Two artificial neural networks were made and the two problems were solved. The one solved chromatism classification. Hue, saturation and their probability of three colors, whose appearing probabilities were maximum in color histogram, were selected as input parameters, and the number of output node could be adjusted with the change of requirement. The other solved edge detection. In this neutral network, edge detection of gray scale image was able to be tested with trained neural networks for a binary image. It prevent the difficulty that the number of needed training samples was too large if gray scale images were directly regarded as training samples. This system is able to be applied to not only glass steel fault inspection but also other product online quality inspection and classification. 展开更多
关键词 neural networks backpropagation networks Chromatism classification edge detection image processing.
下载PDF
Radon CLF:A Novel Approach for Skew Detection Using Radon Transform
14
作者 Yuhang Chen Mahdi Bahaghighat +1 位作者 Aghil Esmaeili Kelishomi Jingyi Du 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期675-697,共23页
In the digital world,a wide range of handwritten and printed documents should be converted to digital format using a variety of tools,including mobile phones and scanners.Unfortunately,this is not an optimal procedure... In the digital world,a wide range of handwritten and printed documents should be converted to digital format using a variety of tools,including mobile phones and scanners.Unfortunately,this is not an optimal procedure,and the entire document image might be degraded.Imperfect conversion effects due to noise,motion blur,and skew distortion can lead to significant impact on the accuracy and effectiveness of document image segmentation and analysis in Optical Character Recognition(OCR)systems.In Document Image Analysis Systems(DIAS),skew estimation of images is a crucial step.In this paper,a novel,fast,and reliable skew detection algorithm based on the Radon Transform and Curve Length Fitness Function(CLF),so-called Radon CLF,was proposed.The Radon CLF model aims to take advantage of the properties of Radon spaces.The Radon CLF explores the dominating angle more effectively for a 1D signal than it does for a 2D input image due to an innovative fitness function formulation for a projected signal of the Radon space.Several significant performance indicators,including Mean Square Error(MSE),Mean Absolute Error(MAE),Peak Signal-to-Noise Ratio(PSNR),Structural Similarity Measure(SSIM),Accuracy,and run-time,were taken into consideration when assessing the performance of our model.In addition,a new dataset named DSI5000 was constructed to assess the accuracy of the CLF model.Both two-dimensional image signal and the Radon space have been used in our simulations to compare the noise effect.Obtained results show that the proposed method is more effective than other approaches already in use,with an accuracy of roughly 99.87%and a run-time of 0.048(s).The introduced model is far more accurate and timeefficient than current approaches in detecting image skew. 展开更多
关键词 document image analysis skew detection Radon transform pattern recognition
下载PDF
Intelligent Parking Management System Based on Image Processing 被引量:4
15
作者 Hilal Al-Kharusi Ibrahim Al-Bahadly 《World Journal of Engineering and Technology》 2014年第2期55-67,共13页
This paper aims to present an intelligent system for parking space detection based on image processing technique. The proposed system captures and processes the rounded image drawn at parking lot and produces the info... This paper aims to present an intelligent system for parking space detection based on image processing technique. The proposed system captures and processes the rounded image drawn at parking lot and produces the information of the empty car parking spaces. In this work, a camera is used as a sensor to take photos to show the occupancy of car parks. The reason why a camera is used is because with an image it can detect the presence of many cars at once. Also, the camera can be easily moved to detect different car parking lots. By having this image, the particular car parks vacant can be known and then the processed information was used to guide a driver to an available car park rather than wasting time to find one. The proposed system has been developed in both software and hardware platform. An automatic parking system is used to make the whole process of parking cars more efficient and less complex for both drivers and administrators. 展开更多
关键词 INTELLIGENT PARKING image processing Space detection
下载PDF
Improvement Detecting Method of Optical Axes Parallelism of Shipboard Photoelectrical Theodolite Based on Image Processing 被引量:3
16
作者 Huihui Zou 《Optics and Photonics Journal》 2017年第8期127-133,共7页
An improvement detecting method was proposed according to the disadvantages of testing method of optical axes parallelism of shipboard photoelectrical theodolite (short for theodolite) based on image processing. Point... An improvement detecting method was proposed according to the disadvantages of testing method of optical axes parallelism of shipboard photoelectrical theodolite (short for theodolite) based on image processing. Pointolite replaced 0.2'' collimator to reduce the errors of crosshair images processing and improve the quality of image. What’s more, the high quality images could help to optimize the image processing method and the testing accuracy. The errors between the trial results interpreted by software and the results tested in dock were less than 10'', which indicated the improve method had some actual application values. 展开更多
关键词 IMPROVEMENT Detecting Method SHIPBOARD Photoelectrical THEODOLITE OPTICAL Axes PARALLELISM image processing
下载PDF
Automatic Traffic Using Image Processing 被引量:1
17
作者 Al Hussain Akoum 《Journal of Software Engineering and Applications》 2017年第9期765-776,共12页
The frequent traffic jams at major intersections call for an effective management system. The paper suggests implementing a smart traffic controller using real-time image processing. The sequence of the camera is anal... The frequent traffic jams at major intersections call for an effective management system. The paper suggests implementing a smart traffic controller using real-time image processing. The sequence of the camera is analyzed using different edge detection algorithms and object counting methods. Previously they used matching method that means the camera will be installed along with traffic light. It will capture the image sequence. To set an image of an empty road as a reference image, the captured images are sequentially matched using image matching;but in my paper, we used filtering method, which filtered the image and released all waste objects and only showed the cars, and after it well showed the number of cars in image. My paper is software that takes a picture or video. It has been customized to be used in the future to control the traffic light sign by giving each sign sufficient time, depending on the number of cars on each direction. 展开更多
关键词 AUTOMATIC TRAFFIC COMPUTER VISION image processing EDGE detection
下载PDF
Automated Angle Detection for Industrial Production Lines Using Combined Image Processing Techniques
18
作者 Pawat Chunhachatrachai Chyi-Yeu Lin 《Intelligent Automation & Soft Computing》 2024年第4期599-618,共20页
Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettin... Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettings,angle detection remains an underexplored domain,with limited integration into production lines.Thispaper addresses the need for automated angle detection in industrial environments by presenting a methodologythat eliminates training time and higher computation cost on Graphics Processing Unit(GPU)from machinelearning in computer vision(e.g.,Convolutional Neural Networks(CNN)).Our approach leverages advanced imageprocessing techniques and a strategic combination of algorithms,including contour selection,circle regression,polar warp transformation,and outlier detection,to provide an adaptive solution for angle detection.By configuringthe algorithm with a diverse dataset and evaluating its performance across various objects,we demonstrate itsefficacy in achieving reliable results,with an average error of only 0.5 degrees.Notably,this error margin is 3.274times lower than the acceptable threshold.Our study highlights the importance of accurate angle detection inindustrial settings and showcases the reliability of our algorithm in accurately determining angles,thus contributingto improved manufacturing processes. 展开更多
关键词 Angle detection image processing algorithm computer vision machine vision industrial automation
下载PDF
Detection of Oscillations in Process Control Loops From Visual Image Space Using Deep Convolutional Networks
19
作者 Tao Wang Qiming Chen +3 位作者 Xun Lang Lei Xie Peng Li Hongye Su 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期982-995,共14页
Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have b... Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers. 展开更多
关键词 Convolutional neural networks(CNNs) deep learning image processing oscillation detection process industries
下载PDF
An Implementation of Multiscale Line Detection and Mathematical Morphology for Efficient and Precise Blood Vessel Segmentation in Fundus Images
20
作者 Syed Ayaz Ali Shah Aamir Shahzad +4 位作者 Musaed Alhussein Chuan Meng Goh Khursheed Aurangzeb Tong Boon Tang Muhammad Awais 《Computers, Materials & Continua》 SCIE EI 2024年第5期2565-2583,共19页
Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when deal... Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when dealing with color fundus images due to issues like non-uniformillumination,low contrast,and variations in vessel appearance,especially in the presence of different pathologies.Furthermore,the speed of the retinal vessel segmentation system is of utmost importance.With the surge of now available big data,the speed of the algorithm becomes increasingly important,carrying almost equivalent weightage to the accuracy of the algorithm.To address these challenges,we present a novel approach for retinal vessel segmentation,leveraging efficient and robust techniques based on multiscale line detection and mathematical morphology.Our algorithm’s performance is evaluated on two publicly available datasets,namely the Digital Retinal Images for Vessel Extraction dataset(DRIVE)and the Structure Analysis of Retina(STARE)dataset.The experimental results demonstrate the effectiveness of our method,withmean accuracy values of 0.9467 forDRIVE and 0.9535 for STARE datasets,aswell as sensitivity values of 0.6952 forDRIVE and 0.6809 for STARE datasets.Notably,our algorithmexhibits competitive performance with state-of-the-art methods.Importantly,it operates at an average speed of 3.73 s per image for DRIVE and 3.75 s for STARE datasets.It is worth noting that these results were achieved using Matlab scripts containing multiple loops.This suggests that the processing time can be further reduced by replacing loops with vectorization.Thus the proposed algorithm can be deployed in real time applications.In summary,our proposed system strikes a fine balance between swift computation and accuracy that is on par with the best available methods in the field. 展开更多
关键词 Line detector vessel detection LOCALIZATION mathematical morphology image processing
下载PDF
上一页 1 2 246 下一页 到第
使用帮助 返回顶部