Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep...Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.展开更多
Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based di...Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based diagnosis,teaching,and research.Although the retrieval accuracy has largely improved,there has been limited development toward visualizing important image features that indicate the similarity of retrieved images.Despite the prevalence of 3D volumetric data in medical imaging such as computed tomography(CT),current CBIR systems still rely on 2D cross-sectional views for the visualization of retrieved images.Such 2D visualization requires users to browse through the image stacks to confirm the similarity of the retrieved images and often involves mental reconstruction of 3D information,including the size,shape,and spatial relations of multiple structures.This process is time-consuming and reliant on users'experience.Methods In this study,we proposed an importance-aware 3D volume visualization method.The rendering parameters were automatically optimized to maximize the visibility of important structures that were detected and prioritized in the retrieval process.We then integrated the proposed visualization into a CBIR system,thereby complementing the 2D cross-sectional views for relevance feedback and further analyses.Results Our preliminary results demonstrate that 3D visualization can provide additional information using multimodal positron emission tomography and computed tomography(PETCT)images of a non-small cell lung cancer dataset.展开更多
The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor l...The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.展开更多
Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image.The key objective is to learn discriminative fin...Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image.The key objective is to learn discriminative fine-grained features by training deep models such that similar images are clustered,and dissimilar images are separated in the low embedding space.Previous works primarily focused on defining local structure loss functions like triplet loss,pairwise loss,etc.However,training via these approaches takes a long training time,and they have poor accuracy.Additionally,representations learned through it tend to tighten up in the embedded space and lose generalizability to unseen classes.This paper proposes a noise-assisted representation learning method for fine-grained image retrieval to mitigate these issues.In the proposed work,class manifold learning is performed in which positive pairs are created with noise insertion operation instead of tightening class clusters.And other instances are treated as negatives within the same cluster.Then a loss function is defined to penalize when the distance between instances of the same class becomes too small relative to the noise pair in that class in embedded space.The proposed approach is validated on CARS-196 and CUB-200 datasets and achieved better retrieval results(85.38%recall@1 for CARS-196%and 70.13%recall@1 for CUB-200)compared to other existing methods.展开更多
To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep ha...To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep hashing-based secure image retrieval technique that extracts more expressive image features and constructs a secure,searchable encryption scheme.First,a deep learning framework based on residual network and transfer learn-ing model is designed to extract more representative image deep features.Secondly,the central similarity is used to quantify and construct the deep hash sequence of features.The Paillier homomorphic encryption encrypts the deep hash sequence to build a high-security and low-complexity searchable index.Finally,according to the additive homomorphic property of Paillier homomorphic encryption,a similarity measurement method suitable for com-puting in the retrieval system’s security is ensured by the encrypted domain.The experimental results,which were obtained on Web Image Database from the National University of Singapore(NUS-WIDE),Microsoft Common Objects in Context(MS COCO),and ImageNet data sets,demonstrate the system’s robust security and precise retrieval,the proposed scheme can achieve efficient image retrieval without revealing user privacy.The retrieval accuracy is improved by at least 37%compared to traditional hashing schemes.At the same time,the retrieval time is saved by at least 9.7%compared to the latest deep hashing schemes.展开更多
Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and elect...Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and electronic patient records.Several methods are applied to enhance the retrieval performance of CBMIR systems.Developing new and effective similarity measure and features fusion methods are two of the most powerful and effective strategies for improving these systems.This study proposes the relative difference-based similarity measure(RDBSM)for CBMIR.The new measure was first used in the similarity calculation stage for the CBMIR using an unweighted fusion method of traditional color and texture features.Furthermore,the study also proposes a weighted fusion method for medical image features extracted using pre-trained convolutional neural networks(CNNs)models.Our proposed RDBSM has outperformed the standard well-known similarity and distance measures using two popular medical image datasets,Kvasir and PH2,in terms of recall and precision retrieval measures.The effectiveness and quality of our proposed similarity measure are also proved using a significant test and statistical confidence bound.展开更多
Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scal...Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scales.A cul-tural heritage image is one of thefine-grained images because each image has the same similarity in most cases.Using the classification technique,distinguishing cultural heritage architecture may be difficult.This study proposes a cultural heri-tage content retrieval method using adaptive deep learning forfine-grained image retrieval.The key contribution of this research was the creation of a retrieval mod-el that could handle incremental streams of new categories while maintaining its past performance in old categories and not losing the old categorization of a cul-tural heritage image.The goal of the proposed method is to perform a retrieval task for classes.Incremental learning for new classes was conducted to reduce the re-training process.In this step,the original class is not necessary for re-train-ing which we call an adaptive deep learning technique.Cultural heritage in the case of Thai archaeological site architecture was retrieved through machine learn-ing and image processing.We analyze the experimental results of incremental learning forfine-grained images with images of Thai archaeological site architec-ture from world heritage provinces in Thailand,which have a similar architecture.Using afine-grained image retrieval technique for this group of cultural heritage images in a database can solve the problem of a high degree of similarity among categories and a high degree of dissimilarity for a specific category.The proposed method for retrieving the correct image from a database can deliver an average accuracy of 85 percent.Adaptive deep learning forfine-grained image retrieval was used to retrieve cultural heritage content,and it outperformed state-of-the-art methods infine-grained image retrieval.展开更多
Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wi...Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wise label similarity is used tofind the matching images from the database.But this method lacks of limited propose code and weak execution of misclassified images.In order to get-rid of the above problem,a novel triplet based label that incorporates context-spatial similarity measure is proposed.A Point Attention Based Triplet Network(PABTN)is introduced to study propose code that gives maximum discriminative ability.To improve the performance of ranking,a corre-lating resolutions for the classification,triplet labels based onfindings,a spatial-attention mechanism and Region Of Interest(ROI)and small trial information loss containing a new triplet cross-entropy loss are used.From the experimental results,it is shown that the proposed technique exhibits better results in terms of mean Reciprocal Rank(mRR)and mean Average Precision(mAP)in the CIFAR-10 and NUS-WIPE datasets.展开更多
Given one specific image,it would be quite significant if humanity could simply retrieve all those pictures that fall into a similar category of images.However,traditional methods are inclined to achieve high-quality ...Given one specific image,it would be quite significant if humanity could simply retrieve all those pictures that fall into a similar category of images.However,traditional methods are inclined to achieve high-quality retrieval by utilizing adequate learning instances,ignoring the extraction of the image’s essential information which leads to difficulty in the retrieval of similar category images just using one reference image.Aiming to solve this problem above,we proposed in this paper one refined sparse representation based similar category image retrieval model.On the one hand,saliency detection and multi-level decomposition could contribute to taking salient and spatial information into consideration more fully in the future.On the other hand,the cross mutual sparse coding model aims to extract the image’s essential feature to the maximumextent possible.At last,we set up a database concluding a large number of multi-source images.Adequate groups of comparative experiments show that our method could contribute to retrieving similar category images effectively.Moreover,adequate groups of ablation experiments show that nearly all procedures play their roles,respectively.展开更多
In existing remote sensing image retrieval(RSIR)datasets,the number of images among different classes varies dramatically,which leads to a severe class imbalance problem.Some studies propose to train the model with th...In existing remote sensing image retrieval(RSIR)datasets,the number of images among different classes varies dramatically,which leads to a severe class imbalance problem.Some studies propose to train the model with the ranking‐based metric(e.g.,average precision[AP]),because AP is robust to class imbalance.However,current AP‐based methods overlook an important issue:only optimising samples ranking before each positive sample,which is limited by the definition of AP and is prone to local optimum.To achieve global optimisation of AP,a novel method,namely Optimising Samples after positive ones&AP loss(OSAP‐Loss)is proposed in this study.Specifically,a novel superior ranking function is designed to make the AP loss differentiable while providing a tighter upper bound.Then,a novel loss called Optimising Samples after Positive ones(OSP)loss is proposed to involve all positive and negative samples ranking after each positive one and to provide a more flexible optimisation strategy for each sample.Finally,a graphics processing unit memory‐free mechanism is developed to thoroughly address the non‐decomposability of AP optimisation.Extensive experimental results on RSIR as well as conventional image retrieval datasets show the superiority and competitive performance of OSAP‐Loss compared to the state‐of‐the‐art.展开更多
In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image ...In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image used in traditional image retrieval into multi query examples so as to include more image features related with semantics.Retrieving images for each of the multi query examples and integrating the retrieval results,more relevant images can be obtained.The property of the recall-precision curve of a general retrieval algorithm and the K-means clustering method are used to realize the expansion according to the distance of image features of the initially retrieved images.The experimental results demonstrate that the AMQE technology can greatly improve the recall and precision of the original algorithms.展开更多
This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed ac...This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.展开更多
Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower...Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).展开更多
The implementation of content-based image retrieval(CBIR)mainly depends on two key technologies:image feature extraction and image feature matching.In this paper,we extract the color features based on Global Color His...The implementation of content-based image retrieval(CBIR)mainly depends on two key technologies:image feature extraction and image feature matching.In this paper,we extract the color features based on Global Color Histogram(GCH)and texture features based on Gray Level Co-occurrence Matrix(GLCM).In order to obtain the effective and representative features of the image,we adopt the fuzzy mathematical algorithm in the process of color feature extraction and texture feature extraction respectively.And we combine the fuzzy color feature vector with the fuzzy texture feature vector to form the comprehensive fuzzy feature vector of the image according to a certain way.Image feature matching mainly depends on the similarity between two image feature vectors.In this paper,we propose a novel similarity measure method based on k-Nearest Neighbors(kNN)and fuzzy mathematical algorithm(SBkNNF).Finding out the k nearest neighborhood images of the query image from the image data set according to an appropriate similarity measure method.Using the k similarity values between the query image and its k neighborhood images to constitute the new k-dimensional fuzzy feature vector corresponding to the query image.And using the k similarity values between the retrieved image and the k neighborhood images of the query image to constitute the new k-dimensional fuzzy feature vector corresponding to the retrieved image.Calculating the similarity between the two kdimensional fuzzy feature vector according to a certain fuzzy similarity algorithm to measure the similarity between the query image and the retrieved image.Extensive experiments are carried out on three data sets:WANG data set,Corel-5k data set and Corel-10k data set.The experimental results show that the outperforming retrieval performance of our proposed CBIR system with the other CBIR systems.展开更多
With the massive growth of images data and the rise of cloud computing that can provide cheap storage space and convenient access,more and more users store data in cloud server.However,how to quickly query the expecte...With the massive growth of images data and the rise of cloud computing that can provide cheap storage space and convenient access,more and more users store data in cloud server.However,how to quickly query the expected data with privacy-preserving is still a challenging in the encryption image data retrieval.Towards this goal,this paper proposes a ciphertext image retrieval method based on SimHash in cloud computing.Firstly,we extract local feature of images,and then cluster the features by K-means.Based on it,the visual word codebook is introduced to represent feature information of images,which hashes the codebook to the corresponding fingerprint.Finally,the image feature vector is generated by SimHash searchable encryption feature algorithm for similarity retrieval.Extensive experiments on two public datasets validate the effectiveness of our method.Besides,the proposed method outperforms one popular searchable encryption,and the results are competitive to the state-of-the-art.展开更多
<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient to...<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div>展开更多
This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hu...This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hue and saturation to extract and represent color information of an image is presented. We also improve the Euclidean-distance algorithm by adding Center of Color to it. The experiment shows modifications made to Euclidean-distance signif-icantly elevate the quality and efficiency of retrieval.展开更多
We propose a content-based parallel image retrieval system to achieve high responding ability. Our system is developed on cluster architectures. It has several retrieval. servers to supply the service of content-based...We propose a content-based parallel image retrieval system to achieve high responding ability. Our system is developed on cluster architectures. It has several retrieval. servers to supply the service of content-based image retrieval. It adopts the Browser/Server (B/S) mode. The users could visit our system though web pages. It uses the symmetrical color-spatial features (SCSF) to represent the content of an image. The SCSF is effective and efficient for image matching because it is independent of image distortion such as rotation and flip as well as it increases the matching accuracy. The SCSF was organized by M-tree, which could speedup the searching procedure. Our experiments show that the image matching is quickly and efficiently with the use of SCSF. And with the support of several retrieval servers, the system could respond to many users at mean time. Key words content-based image retrieval - cluster architecture - color-spatial feature - B/S mode - task parallel - WWW - Internet CLC number TP391 Foundation item: Supported by the National Natural Science Foundation of China (60173058)Biography: ZHOU Bing (1975-), male, Ph. D candidate, reseach direction: data mining, content-based image retrieval.展开更多
In this paper, we propose a parallel computing technique for content-based image retrieval (CBIR) system. This technique is mainly used for single node with multi-core processor, which is different from those based ...In this paper, we propose a parallel computing technique for content-based image retrieval (CBIR) system. This technique is mainly used for single node with multi-core processor, which is different from those based on cluster or network computing architecture. Due to its specific applications (such as medical image processing) and the harsh terms of hardware resource requirement, the CBIR system has been prevented from being widely used. With the increasing volume of the image database, the widespread use of multi-core processors, and the requirement of the retrieval accuracy and speed, we need to achieve a retrieval strategy which is based on multi-core processor to make the retrieval faster and more convenient than before. Experimental results demonstrate that this parallel architecture can significantly improve the performance of retrieval system. In addition, we also propose an efficient parallel technique with the combinations of the cluster and the multi-core techniques, which is supposed to gear to the new trend of the cloud computing.展开更多
How to construct an appropriate spatial consistent measurement is the key to improving image retrieval performance. To address this problem, this paper introduces a novel image retrieval mechanism based on the family ...How to construct an appropriate spatial consistent measurement is the key to improving image retrieval performance. To address this problem, this paper introduces a novel image retrieval mechanism based on the family filtration in object region. First, we supply an object region by selecting a rectangle in a query image such that system returns a ranked list of images that contain the same object, retrieved from the corpus based on 100 images, as a result of the first rank. To further improve retrieval performance, we add an efficient spatial consistency stage, which is named family-based spatial consistency filtration, to re-rank the results returned by the first rank. We elaborate the performance of the retrieval system by some experiments on the dataset selected from the key frames of "TREC Video Retrieval Evaluation 2005 (TRECVID2005)". The results of experiments show that the retrieval mechanism proposed by us has vast major effect on the retrieval quality. The paper also verifies the stability of the retrieval mechanism by increasing the number of images from 100 to 2000 and realizes generalized retrieval with the object outside the dataset.展开更多
文摘Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.
文摘Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based diagnosis,teaching,and research.Although the retrieval accuracy has largely improved,there has been limited development toward visualizing important image features that indicate the similarity of retrieved images.Despite the prevalence of 3D volumetric data in medical imaging such as computed tomography(CT),current CBIR systems still rely on 2D cross-sectional views for the visualization of retrieved images.Such 2D visualization requires users to browse through the image stacks to confirm the similarity of the retrieved images and often involves mental reconstruction of 3D information,including the size,shape,and spatial relations of multiple structures.This process is time-consuming and reliant on users'experience.Methods In this study,we proposed an importance-aware 3D volume visualization method.The rendering parameters were automatically optimized to maximize the visibility of important structures that were detected and prioritized in the retrieval process.We then integrated the proposed visualization into a CBIR system,thereby complementing the 2D cross-sectional views for relevance feedback and further analyses.Results Our preliminary results demonstrate that 3D visualization can provide additional information using multimodal positron emission tomography and computed tomography(PETCT)images of a non-small cell lung cancer dataset.
文摘The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.
文摘Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image.The key objective is to learn discriminative fine-grained features by training deep models such that similar images are clustered,and dissimilar images are separated in the low embedding space.Previous works primarily focused on defining local structure loss functions like triplet loss,pairwise loss,etc.However,training via these approaches takes a long training time,and they have poor accuracy.Additionally,representations learned through it tend to tighten up in the embedded space and lose generalizability to unseen classes.This paper proposes a noise-assisted representation learning method for fine-grained image retrieval to mitigate these issues.In the proposed work,class manifold learning is performed in which positive pairs are created with noise insertion operation instead of tightening class clusters.And other instances are treated as negatives within the same cluster.Then a loss function is defined to penalize when the distance between instances of the same class becomes too small relative to the noise pair in that class in embedded space.The proposed approach is validated on CARS-196 and CUB-200 datasets and achieved better retrieval results(85.38%recall@1 for CARS-196%and 70.13%recall@1 for CUB-200)compared to other existing methods.
基金supported by the National Natural Science Foundation of China(No.61862041).
文摘To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security,retrieval efficiency,and retrieval accuracy.This research suggests a searchable encryption and deep hashing-based secure image retrieval technique that extracts more expressive image features and constructs a secure,searchable encryption scheme.First,a deep learning framework based on residual network and transfer learn-ing model is designed to extract more representative image deep features.Secondly,the central similarity is used to quantify and construct the deep hash sequence of features.The Paillier homomorphic encryption encrypts the deep hash sequence to build a high-security and low-complexity searchable index.Finally,according to the additive homomorphic property of Paillier homomorphic encryption,a similarity measurement method suitable for com-puting in the retrieval system’s security is ensured by the encrypted domain.The experimental results,which were obtained on Web Image Database from the National University of Singapore(NUS-WIDE),Microsoft Common Objects in Context(MS COCO),and ImageNet data sets,demonstrate the system’s robust security and precise retrieval,the proposed scheme can achieve efficient image retrieval without revealing user privacy.The retrieval accuracy is improved by at least 37%compared to traditional hashing schemes.At the same time,the retrieval time is saved by at least 9.7%compared to the latest deep hashing schemes.
基金funded by the Deanship of Scientific Research (DSR)at King Abdulaziz University,Jeddah,Saudi Arabia,Under Grant No. (G:146-830-1441).
文摘Content-based medical image retrieval(CBMIR)is a technique for retrieving medical images based on automatically derived image features.There are many applications of CBMIR,such as teaching,research,diagnosis and electronic patient records.Several methods are applied to enhance the retrieval performance of CBMIR systems.Developing new and effective similarity measure and features fusion methods are two of the most powerful and effective strategies for improving these systems.This study proposes the relative difference-based similarity measure(RDBSM)for CBMIR.The new measure was first used in the similarity calculation stage for the CBMIR using an unweighted fusion method of traditional color and texture features.Furthermore,the study also proposes a weighted fusion method for medical image features extracted using pre-trained convolutional neural networks(CNNs)models.Our proposed RDBSM has outperformed the standard well-known similarity and distance measures using two popular medical image datasets,Kvasir and PH2,in terms of recall and precision retrieval measures.The effectiveness and quality of our proposed similarity measure are also proved using a significant test and statistical confidence bound.
基金This research was funded by King Mongkut’s University of Technology North Bangkok(Contract no.KMUTNB-62-KNOW-026).
文摘Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scales.A cul-tural heritage image is one of thefine-grained images because each image has the same similarity in most cases.Using the classification technique,distinguishing cultural heritage architecture may be difficult.This study proposes a cultural heri-tage content retrieval method using adaptive deep learning forfine-grained image retrieval.The key contribution of this research was the creation of a retrieval mod-el that could handle incremental streams of new categories while maintaining its past performance in old categories and not losing the old categorization of a cul-tural heritage image.The goal of the proposed method is to perform a retrieval task for classes.Incremental learning for new classes was conducted to reduce the re-training process.In this step,the original class is not necessary for re-train-ing which we call an adaptive deep learning technique.Cultural heritage in the case of Thai archaeological site architecture was retrieved through machine learn-ing and image processing.We analyze the experimental results of incremental learning forfine-grained images with images of Thai archaeological site architec-ture from world heritage provinces in Thailand,which have a similar architecture.Using afine-grained image retrieval technique for this group of cultural heritage images in a database can solve the problem of a high degree of similarity among categories and a high degree of dissimilarity for a specific category.The proposed method for retrieving the correct image from a database can deliver an average accuracy of 85 percent.Adaptive deep learning forfine-grained image retrieval was used to retrieve cultural heritage content,and it outperformed state-of-the-art methods infine-grained image retrieval.
文摘Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wise label similarity is used tofind the matching images from the database.But this method lacks of limited propose code and weak execution of misclassified images.In order to get-rid of the above problem,a novel triplet based label that incorporates context-spatial similarity measure is proposed.A Point Attention Based Triplet Network(PABTN)is introduced to study propose code that gives maximum discriminative ability.To improve the performance of ranking,a corre-lating resolutions for the classification,triplet labels based onfindings,a spatial-attention mechanism and Region Of Interest(ROI)and small trial information loss containing a new triplet cross-entropy loss are used.From the experimental results,it is shown that the proposed technique exhibits better results in terms of mean Reciprocal Rank(mRR)and mean Average Precision(mAP)in the CIFAR-10 and NUS-WIPE datasets.
基金sponsored by the National Natural Science Foundation of China(Grants:62002200,61772319)Shandong Natural Science Foundation of China(Grant:ZR2020QF012).
文摘Given one specific image,it would be quite significant if humanity could simply retrieve all those pictures that fall into a similar category of images.However,traditional methods are inclined to achieve high-quality retrieval by utilizing adequate learning instances,ignoring the extraction of the image’s essential information which leads to difficulty in the retrieval of similar category images just using one reference image.Aiming to solve this problem above,we proposed in this paper one refined sparse representation based similar category image retrieval model.On the one hand,saliency detection and multi-level decomposition could contribute to taking salient and spatial information into consideration more fully in the future.On the other hand,the cross mutual sparse coding model aims to extract the image’s essential feature to the maximumextent possible.At last,we set up a database concluding a large number of multi-source images.Adequate groups of comparative experiments show that our method could contribute to retrieving similar category images effectively.Moreover,adequate groups of ablation experiments show that nearly all procedures play their roles,respectively.
基金supported by the National Nature Science Foundation of China(No.U1803262,62176191,62171325)Nature Science Foundation of Hubei Province(2022CFB018)financially supported by fund from Hubei Province Key Laboratory of Intelligent Information Processing and Real‐time Industrial System(Wuhan University of Science and Technology)(ZNXX2022001).
文摘In existing remote sensing image retrieval(RSIR)datasets,the number of images among different classes varies dramatically,which leads to a severe class imbalance problem.Some studies propose to train the model with the ranking‐based metric(e.g.,average precision[AP]),because AP is robust to class imbalance.However,current AP‐based methods overlook an important issue:only optimising samples ranking before each positive sample,which is limited by the definition of AP and is prone to local optimum.To achieve global optimisation of AP,a novel method,namely Optimising Samples after positive ones&AP loss(OSAP‐Loss)is proposed in this study.Specifically,a novel superior ranking function is designed to make the AP loss differentiable while providing a tighter upper bound.Then,a novel loss called Optimising Samples after Positive ones(OSP)loss is proposed to involve all positive and negative samples ranking after each positive one and to provide a more flexible optimisation strategy for each sample.Finally,a graphics processing unit memory‐free mechanism is developed to thoroughly address the non‐decomposability of AP optimisation.Extensive experimental results on RSIR as well as conventional image retrieval datasets show the superiority and competitive performance of OSAP‐Loss compared to the state‐of‐the‐art.
基金The National High Technology Research and Develop-ment Program of China (863 Program) (No.2002AA413420).
文摘In order to narrow the semantic gap existing in content-based image retrieval (CBIR),a novel retrieval technology called auto-extended multi query examples (AMQE) is proposed.It expands the single one query image used in traditional image retrieval into multi query examples so as to include more image features related with semantics.Retrieving images for each of the multi query examples and integrating the retrieval results,more relevant images can be obtained.The property of the recall-precision curve of a general retrieval algorithm and the K-means clustering method are used to realize the expansion according to the distance of image features of the initially retrieved images.The experimental results demonstrate that the AMQE technology can greatly improve the recall and precision of the original algorithms.
文摘This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.
基金Project (Nos. 60302012 60202002) supported by the NationaNatural Science Foundation of China and the Research GrantCouncil of the Hong Kong Special Administrative Region (NoPolyU 5119.01E) China
文摘Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).
基金This research was supported by the National Natural Science Foundation of China(Grant Number:61702310)the National Natural Science Foundation of China(Grant Number:61401260).
文摘The implementation of content-based image retrieval(CBIR)mainly depends on two key technologies:image feature extraction and image feature matching.In this paper,we extract the color features based on Global Color Histogram(GCH)and texture features based on Gray Level Co-occurrence Matrix(GLCM).In order to obtain the effective and representative features of the image,we adopt the fuzzy mathematical algorithm in the process of color feature extraction and texture feature extraction respectively.And we combine the fuzzy color feature vector with the fuzzy texture feature vector to form the comprehensive fuzzy feature vector of the image according to a certain way.Image feature matching mainly depends on the similarity between two image feature vectors.In this paper,we propose a novel similarity measure method based on k-Nearest Neighbors(kNN)and fuzzy mathematical algorithm(SBkNNF).Finding out the k nearest neighborhood images of the query image from the image data set according to an appropriate similarity measure method.Using the k similarity values between the query image and its k neighborhood images to constitute the new k-dimensional fuzzy feature vector corresponding to the query image.And using the k similarity values between the retrieved image and the k neighborhood images of the query image to constitute the new k-dimensional fuzzy feature vector corresponding to the retrieved image.Calculating the similarity between the two kdimensional fuzzy feature vector according to a certain fuzzy similarity algorithm to measure the similarity between the query image and the retrieved image.Extensive experiments are carried out on three data sets:WANG data set,Corel-5k data set and Corel-10k data set.The experimental results show that the outperforming retrieval performance of our proposed CBIR system with the other CBIR systems.
基金This work is supported by the National Natural Science Foundation of China(No.61772561)the Key Research&Development Plan of Hunan Province(No.2018NK2012)+2 种基金the Science Research Projects of Hunan Provincial Education Department(Nos.18A174,18C0262)the Science&Technology Innovation Platform and Talent Plan of Hunan Province(2017TP1022)this work is implemented at the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data Property,Universities of Hunan Province,Open project(No.20181901CRP04).
文摘With the massive growth of images data and the rise of cloud computing that can provide cheap storage space and convenient access,more and more users store data in cloud server.However,how to quickly query the expected data with privacy-preserving is still a challenging in the encryption image data retrieval.Towards this goal,this paper proposes a ciphertext image retrieval method based on SimHash in cloud computing.Firstly,we extract local feature of images,and then cluster the features by K-means.Based on it,the visual word codebook is introduced to represent feature information of images,which hashes the codebook to the corresponding fingerprint.Finally,the image feature vector is generated by SimHash searchable encryption feature algorithm for similarity retrieval.Extensive experiments on two public datasets validate the effectiveness of our method.Besides,the proposed method outperforms one popular searchable encryption,and the results are competitive to the state-of-the-art.
文摘<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div>
基金Supported by the Project of Science & Technology Depart ment of Shanghai (No.055115001)
文摘This paper introduces the principles of using color histogram to match images in CBIR. And a prototype CBIR system is designed with color matching function. A new method using 2-dimensional color histogram based on hue and saturation to extract and represent color information of an image is presented. We also improve the Euclidean-distance algorithm by adding Center of Color to it. The experiment shows modifications made to Euclidean-distance signif-icantly elevate the quality and efficiency of retrieval.
文摘We propose a content-based parallel image retrieval system to achieve high responding ability. Our system is developed on cluster architectures. It has several retrieval. servers to supply the service of content-based image retrieval. It adopts the Browser/Server (B/S) mode. The users could visit our system though web pages. It uses the symmetrical color-spatial features (SCSF) to represent the content of an image. The SCSF is effective and efficient for image matching because it is independent of image distortion such as rotation and flip as well as it increases the matching accuracy. The SCSF was organized by M-tree, which could speedup the searching procedure. Our experiments show that the image matching is quickly and efficiently with the use of SCSF. And with the support of several retrieval servers, the system could respond to many users at mean time. Key words content-based image retrieval - cluster architecture - color-spatial feature - B/S mode - task parallel - WWW - Internet CLC number TP391 Foundation item: Supported by the National Natural Science Foundation of China (60173058)Biography: ZHOU Bing (1975-), male, Ph. D candidate, reseach direction: data mining, content-based image retrieval.
基金supported by the Natural Science Foundation of Shanghai (Grant No.08ZR1408200)the Shanghai Leading Academic Discipline Project (Grant No.J50103)the Open Project Program of the National Laboratory of Pattern Recognition
文摘In this paper, we propose a parallel computing technique for content-based image retrieval (CBIR) system. This technique is mainly used for single node with multi-core processor, which is different from those based on cluster or network computing architecture. Due to its specific applications (such as medical image processing) and the harsh terms of hardware resource requirement, the CBIR system has been prevented from being widely used. With the increasing volume of the image database, the widespread use of multi-core processors, and the requirement of the retrieval accuracy and speed, we need to achieve a retrieval strategy which is based on multi-core processor to make the retrieval faster and more convenient than before. Experimental results demonstrate that this parallel architecture can significantly improve the performance of retrieval system. In addition, we also propose an efficient parallel technique with the combinations of the cluster and the multi-core techniques, which is supposed to gear to the new trend of the cloud computing.
基金supported by National High Technology Research and Development Program of China (863 Program)(No.2007AA01Z416)National Natural Science Foundation of China (No.60773056)+1 种基金Beijing New Star Project on Science and Technology (No.2007B071)Natural Science Foundation of Liaoning Province of China (No.20052184)
文摘How to construct an appropriate spatial consistent measurement is the key to improving image retrieval performance. To address this problem, this paper introduces a novel image retrieval mechanism based on the family filtration in object region. First, we supply an object region by selecting a rectangle in a query image such that system returns a ranked list of images that contain the same object, retrieved from the corpus based on 100 images, as a result of the first rank. To further improve retrieval performance, we add an efficient spatial consistency stage, which is named family-based spatial consistency filtration, to re-rank the results returned by the first rank. We elaborate the performance of the retrieval system by some experiments on the dataset selected from the key frames of "TREC Video Retrieval Evaluation 2005 (TRECVID2005)". The results of experiments show that the retrieval mechanism proposed by us has vast major effect on the retrieval quality. The paper also verifies the stability of the retrieval mechanism by increasing the number of images from 100 to 2000 and realizes generalized retrieval with the object outside the dataset.