The Image sensor needs various image processing by Image Signal Processor (ISP) to improve image quality. Conventional cameras have their own software ISP functions to perform in PC instead of using commercial ISP c...The Image sensor needs various image processing by Image Signal Processor (ISP) to improve image quality. Conventional cameras have their own software ISP functions to perform in PC instead of using commercial ISP chips. However these methods have problems such as large computation for image processing. In this paper, th authors proposed ISP that significantly reduced chip area by efficiently sharing of hardware and software. Large operation blocks are designed to hardware for high performances, and hardware is imployed simultaneously with software considering the size of the hardware. The implemented ISP can process Video Graphics Array (VGA) (640 * 480) images and has 91 450 gates size in 0. 35 μm process.展开更多
The 4th National Conference on Speech,Image,Communication and Signal Pro-cessing,which was sponsored by the Institute of Speech,Hearing,and Music Acoustics,Acoustical Society of China and the Institute of Signal Proce...The 4th National Conference on Speech,Image,Communication and Signal Pro-cessing,which was sponsored by the Institute of Speech,Hearing,and Music Acoustics,Acoustical Society of China and the Institute of Signal Processing,Electronic Society ofChina,was held,25—27 October,1989,at Beijing Institute of Post and Telecommun-ication.The conference drew a registration of 150 from different places in the country,which made it the largest conference in the last eight years.The president of Institute of Speech,Hearing,and Music Acoustics,ASC,professorZHANG Jialu made a openning speech at the openning session,and the honorary presi-dent of Acoustical Society of China,professor MAA Dah-You and the president of展开更多
While recent years have witnessed a dramatic upsurge of exploiting deep neural networks toward solving image denoising,existing methods mostly rely on simple noise assumptions,such as additive white Gaussian noise(AWG...While recent years have witnessed a dramatic upsurge of exploiting deep neural networks toward solving image denoising,existing methods mostly rely on simple noise assumptions,such as additive white Gaussian noise(AWGN),JPEG compression noise and camera sensor noise,and a general-purpose blind denoising method for real images remains unsolved.In this paper,we attempt to solve this problem from the perspective of network architecture design and training data synthesis.Specifically,for the network architecture design,we propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block,and then plug it as the main building block into the widely-used image-to-image translation UNet architecture.For the training data synthesis,we design a practical noise degradation model which takes into consideration different kinds of noise(including Gaussian,Poisson,speckle,JPEG compression,and processed camera sensor noises)and resizing,and also involves a random shuffle strategy and a double degradation strategy.Extensive experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance and the new degradation model can help to significantly improve the practicability.We believe our work can provide useful insights into current denoising research.The source code is available at https://github.com/cszn/SCUNet.展开更多
As an important computing operation,photonic matrix-vector multiplication is widely used in photonic neutral networks and signal processing.However,conventional incoherent matrix-vector multiplication focuses on real-...As an important computing operation,photonic matrix-vector multiplication is widely used in photonic neutral networks and signal processing.However,conventional incoherent matrix-vector multiplication focuses on real-valued operations,which cannot work well in complex-valued neural networks and discrete Fourier transform.In this paper,we propose a systematic solution to extend the matrix computation of microring arrays from the real-valued field to the complex-valued field,and from small-scale(i.e.,4×4)to large-scale matrix computation(i.e.,16×16).Combining matrix decomposition and matrix partition,our photonic complex matrix-vector multiplier chip can support arbitrary large-scale and complex-valued matrix computation.We further demonstrate Walsh-Hardmard transform,discrete cosine transform,discrete Fourier transform,and image convolutional processing.Our scheme provides a path towards breaking the limits of complex-valued computing accelerator in conventional incoherent optical architecture.More importantly,our results reveal that an integrated photonic platform is of huge potential for large-scale,complex-valued,artificial intelligence computing and signal processing.展开更多
基金sponsored by ETRI System Semiconductor Industry Promotion Center,Human Resource Development Project for SoC Convergence and“System IC2010”project of Korea Ministry of Knowledge Economy
文摘The Image sensor needs various image processing by Image Signal Processor (ISP) to improve image quality. Conventional cameras have their own software ISP functions to perform in PC instead of using commercial ISP chips. However these methods have problems such as large computation for image processing. In this paper, th authors proposed ISP that significantly reduced chip area by efficiently sharing of hardware and software. Large operation blocks are designed to hardware for high performances, and hardware is imployed simultaneously with software considering the size of the hardware. The implemented ISP can process Video Graphics Array (VGA) (640 * 480) images and has 91 450 gates size in 0. 35 μm process.
文摘The 4th National Conference on Speech,Image,Communication and Signal Pro-cessing,which was sponsored by the Institute of Speech,Hearing,and Music Acoustics,Acoustical Society of China and the Institute of Signal Processing,Electronic Society ofChina,was held,25—27 October,1989,at Beijing Institute of Post and Telecommun-ication.The conference drew a registration of 150 from different places in the country,which made it the largest conference in the last eight years.The president of Institute of Speech,Hearing,and Music Acoustics,ASC,professorZHANG Jialu made a openning speech at the openning session,and the honorary presi-dent of Acoustical Society of China,professor MAA Dah-You and the president of
基金This work was partly supported by the ETH Zürich Fund(OK),and by Huawei grants.
文摘While recent years have witnessed a dramatic upsurge of exploiting deep neural networks toward solving image denoising,existing methods mostly rely on simple noise assumptions,such as additive white Gaussian noise(AWGN),JPEG compression noise and camera sensor noise,and a general-purpose blind denoising method for real images remains unsolved.In this paper,we attempt to solve this problem from the perspective of network architecture design and training data synthesis.Specifically,for the network architecture design,we propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block,and then plug it as the main building block into the widely-used image-to-image translation UNet architecture.For the training data synthesis,we design a practical noise degradation model which takes into consideration different kinds of noise(including Gaussian,Poisson,speckle,JPEG compression,and processed camera sensor noises)and resizing,and also involves a random shuffle strategy and a double degradation strategy.Extensive experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance and the new degradation model can help to significantly improve the practicability.We believe our work can provide useful insights into current denoising research.The source code is available at https://github.com/cszn/SCUNet.
基金This work was partially supported by the National Key Research and Development Project of China(No.2018YFB2201901)the National Natural Science Foundation of China(Grant Nos.61805090 and 62075075)+1 种基金Shenzhen Science and Technology Innovation Commission(No.SGDX2019081623060558)Research Grants Council of Hong Kong SAR(No.PolyU152241/18E).
文摘As an important computing operation,photonic matrix-vector multiplication is widely used in photonic neutral networks and signal processing.However,conventional incoherent matrix-vector multiplication focuses on real-valued operations,which cannot work well in complex-valued neural networks and discrete Fourier transform.In this paper,we propose a systematic solution to extend the matrix computation of microring arrays from the real-valued field to the complex-valued field,and from small-scale(i.e.,4×4)to large-scale matrix computation(i.e.,16×16).Combining matrix decomposition and matrix partition,our photonic complex matrix-vector multiplier chip can support arbitrary large-scale and complex-valued matrix computation.We further demonstrate Walsh-Hardmard transform,discrete cosine transform,discrete Fourier transform,and image convolutional processing.Our scheme provides a path towards breaking the limits of complex-valued computing accelerator in conventional incoherent optical architecture.More importantly,our results reveal that an integrated photonic platform is of huge potential for large-scale,complex-valued,artificial intelligence computing and signal processing.