Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona...Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.展开更多
Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high...Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.展开更多
Aiming at the problems such as low reconstruction efficiency,fuzzy texture details,and difficult convergence of reconstruction network face image super-resolution reconstruction algorithms,a new super-resolution recon...Aiming at the problems such as low reconstruction efficiency,fuzzy texture details,and difficult convergence of reconstruction network face image super-resolution reconstruction algorithms,a new super-resolution reconstruction algorithm with residual concern was proposed.Firstly,to solve the influence of redundant and invalid information about the face image super-resolution reconstruction network,an attention mechanism was introduced into the feature extraction module of the network,which improved the feature utilization rate of the overall network.Secondly,to alleviate the problem of gradient disappearance,the adaptive residual was introduced into the network to make the network model easier to converge during training,and features were supplemented according to the needs during training.The experimental results showed that the proposed algorithm had better reconstruction performance,more facial details,and clearer texture in the reconstructed face image than the comparison algorithm.In objective evaluation,the proposed algorithm's peak signalto-noise ratio and structural similarity were also better than other algorithms.展开更多
In order to solve the problem of the lack of ornamental value and research value of ancient mural paintings due to low resolution and fuzzy texture details,a super resolution(SR)method based on generative adduction ne...In order to solve the problem of the lack of ornamental value and research value of ancient mural paintings due to low resolution and fuzzy texture details,a super resolution(SR)method based on generative adduction network(GAN)was proposed.This method reconstructed the detail texture of mural image better.Firstly,in view of the insufficient utilization of shallow image features,information distillation blocks(IDB)were introduced to extract shallow image features and enhance the output results of the network behind.Secondly,residual dense blocks with residual scaling and feature fusion(RRDB-Fs)were used to extract deep image features,which removed the BN layer in the residual block that affected the quality of image generation,and improved the training speed of the network.Furthermore,local feature fusion and global feature fusion were applied in the generation network,and the features of different levels were merged together adaptively,so that the reconstructed image contained rich details.Finally,in calculating the perceptual loss,the brightness consistency between the reconstructed fresco and the original fresco was enhanced by using the features before activation,while avoiding artificial interference.The experimental results showed that the peak signal-to-noise ratio and structural similarity metrics were improved compared with other algorithms,with an improvement of 0.512 dB-3.016 dB in peak signal-to-noise ratio and 0.009-0.089 in structural similarity,and the proposed method had better visual effects.展开更多
A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algo...A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET imagereconstruction. In the new approach, the projection data is partitioned into disjoint blocks; eachiteration step involves only one of these blocks. SAGE updates the parameters sequentially in eachblock. In experiments, the RBI-SAGE algorithm and classical SAGE algorithm are compared in theapplication on positron emission tomography (PET) image reconstruction. Simulation results show thatRBI-SAGE has better performance than SAGE in both convergence and image quality.展开更多
In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is prop...In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.展开更多
To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compres...To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively.展开更多
The low-density imaging performance of a zone plate-based nano-resolution hard x-ray computed tomography(CT)system can be significantly improved by incorporating a grating-based Lau interferometer. Due to the diffract...The low-density imaging performance of a zone plate-based nano-resolution hard x-ray computed tomography(CT)system can be significantly improved by incorporating a grating-based Lau interferometer. Due to the diffraction, however,the acquired nano-resolution phase signal may suffer splitting problem, which impedes the direct reconstruction of phase contrast CT(nPCT) images. To overcome, a new model-driven nPCT image reconstruction algorithm is developed in this study. In it, the diffraction procedure is mathematically modeled into a matrix B, from which the projections without signal splitting can be generated invertedly. Furthermore, a penalized weighted least-square model with total variation(PWLSTV) is employed to denoise these projections, from which nPCT images with high accuracy are directly reconstructed.Numerical experiments demonstrate that this new algorithm is able to work with phase projections having any splitting distances. Moreover, results also reveal that nPCT images of higher signal-to-noise-ratio(SNR) could be reconstructed from projections having larger splitting distances. In summary, a novel model-driven nPCT image reconstruction algorithm with high accuracy and robustness is verified for the Lau interferometer-based hard x-ray nano-resolution phase contrast imaging.展开更多
Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in prac...Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.展开更多
With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper d...With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.展开更多
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of...A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.展开更多
Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water a...Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results.展开更多
The purpose of this study is to introduce a novel empirical iterative algorithm for medical image reconstruction, under the short name MRP-ISWLS (Median Root Prior Image Space Weighted Least Squares). Further, we asse...The purpose of this study is to introduce a novel empirical iterative algorithm for medical image reconstruction, under the short name MRP-ISWLS (Median Root Prior Image Space Weighted Least Squares). Further, we assess the performance of the new algorithm by comparing it to the simultaneous version of known MRP algorithms. All algorithms are compared in terms of cross-correlation and CNRs (Contrast-to-Noise Ratios). As it turns out, MRP-ISWLS presents higher CNRs than the known algorithms for objects of different size. Also MRP-ISWLS has better noise manipulation.展开更多
The evaluation approach to the accuracy of the image feature descriptors plays an important role in image feature extraction. We point out that the image shape feature can be described by the Zernike moments set while...The evaluation approach to the accuracy of the image feature descriptors plays an important role in image feature extraction. We point out that the image shape feature can be described by the Zernike moments set while briefly introducing the basic concept of the Zernike moment. After talking about the image reconstruction technique based on the inverse transformation of Zernike moment, the evaluation approach to the accuracy of the Zernike moments shape feature via the dissimilarity degree and the reconstruction ratio between the original image and the reconstructed image is proposed. The experiment results demonstrate the feasibility of this evaluation approach to image Zernike moments shape feature.展开更多
A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron micr...A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron microscope slices by Fou-rier-Bessel synthesis and electron tomography (ET), and a series of computed tomography (CT) was developed to perform si-multaneous measurement on the structure and function of biomedical samples. The paper presents the 3D reconstruction seg-mentation display and analysis results of pollen spore, chaperonin, virus, head, cervical bone, tibia and carpus. At the same time, it also puts forward some potential applications of the new technique in the biomedical realm.展开更多
Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed ...Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.展开更多
An effective approach is proposed for 3D urban scene reconstruction in the form of point cloud with semantic labeling. Starting from high resolution oblique aerial images,our approach proceeds through three main stage...An effective approach is proposed for 3D urban scene reconstruction in the form of point cloud with semantic labeling. Starting from high resolution oblique aerial images,our approach proceeds through three main stages: geographic reconstruction, geometrical reconstruction and semantic reconstruction. The absolute position and orientation of all the cameras relative to the real world are recovered in the geographic reconstruction stage. Then, in the geometrical reconstruction stage,an improved multi-view stereo matching method is employed to produce 3D dense points with color and normal information by taking into account the prior knowledge of aerial imagery.Finally the point cloud is classified into three classes(building,vegetation, and ground) by a rule-based hierarchical approach in the semantic reconstruction step. Experiments on complex urban scene show that our proposed 3-stage approach could generate reasonable reconstruction result robustly and efficiently.By comparing our final semantic reconstruction result with the manually labeled ground truth, classification accuracies from86.75% to 93.02% are obtained.展开更多
The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we...The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we apply the Algebraic Reconstruction Technique(ART)and the minimization of the image Total Variation(TV)method,with a combination of priori knowledge of north–south symmetry,to reconstruct plasmaspheric He+density from simulated EUV images.The results demonstrate that incorporating priori assumption can be particularly useful when the projection data is insufficient.This method has good performance even with a projection angle of less than 150 degrees.The method of our study is expected to have applications in the Soft X-ray Imager(SXI)reconstruction for the Solar wind–Magnetosphere–Ionosphere Link Explorer(SMILE)mission.展开更多
Cone-beam CT (CBCT) scanners are based on volumetric tomography, using a 2D extended digital array providing an area detector [1,2]. Compared to traditional CT, CBCT has many advantages, such as less X-ray beam limita...Cone-beam CT (CBCT) scanners are based on volumetric tomography, using a 2D extended digital array providing an area detector [1,2]. Compared to traditional CT, CBCT has many advantages, such as less X-ray beam limitation, and rapid scan time, etc. However, in CBCT images the x-ray beam has lower mean kilovolt (peak) energy, so the metal artifact is more pronounced on. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used to replace the pixels inside the metal object with the boundary pixels. The modified projection data, using synthetically Radon Transformation, were then used to reconstruct a new back projected CBCT image. In this paper, we present a method, based on the morphological, area and pixel operators, which we applied on the Radon transformed image, to reduce the metal artifacts in CBCT, then we built the Radon back project images using the radon invers transformation. The artifacts effects on the 3d-reconstruction is that, the soft tissues appears as bones or teeth. For the preprocessing of the CBCT images, two methods are used to recognize the noisy black areas that the first depends on thresholding and closing algorithm, and the second depends on tracing boundaries after using thresholding algorithm too. The intensity of these areas is the lowest in the image than other tissues, so we profit this property to detect the edges of these areas. These two methods are applied on phantom and patient image data. It deals with reconstructed CBCT dicom images and can effectively reduce such metal artifacts. Due to the data of the constructed images are corrupted by these metal artifacts, qualitative and quantitative analysis of CBCT images is very essential.展开更多
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F...A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.展开更多
基金funded by the National Natural Science Foundation of China(62125504,61827825,and 31901059)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.
基金supported by National Key R&D Program of China[2022YFC2402400]the National Natural Science Foundation of China[Grant No.62275062]Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology[Grant No.2020B121201010-4].
文摘Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.
基金supported by National Natural Science Foundation of China(No.62063014)。
文摘Aiming at the problems such as low reconstruction efficiency,fuzzy texture details,and difficult convergence of reconstruction network face image super-resolution reconstruction algorithms,a new super-resolution reconstruction algorithm with residual concern was proposed.Firstly,to solve the influence of redundant and invalid information about the face image super-resolution reconstruction network,an attention mechanism was introduced into the feature extraction module of the network,which improved the feature utilization rate of the overall network.Secondly,to alleviate the problem of gradient disappearance,the adaptive residual was introduced into the network to make the network model easier to converge during training,and features were supplemented according to the needs during training.The experimental results showed that the proposed algorithm had better reconstruction performance,more facial details,and clearer texture in the reconstructed face image than the comparison algorithm.In objective evaluation,the proposed algorithm's peak signalto-noise ratio and structural similarity were also better than other algorithms.
文摘In order to solve the problem of the lack of ornamental value and research value of ancient mural paintings due to low resolution and fuzzy texture details,a super resolution(SR)method based on generative adduction network(GAN)was proposed.This method reconstructed the detail texture of mural image better.Firstly,in view of the insufficient utilization of shallow image features,information distillation blocks(IDB)were introduced to extract shallow image features and enhance the output results of the network behind.Secondly,residual dense blocks with residual scaling and feature fusion(RRDB-Fs)were used to extract deep image features,which removed the BN layer in the residual block that affected the quality of image generation,and improved the training speed of the network.Furthermore,local feature fusion and global feature fusion were applied in the generation network,and the features of different levels were merged together adaptively,so that the reconstructed image contained rich details.Finally,in calculating the perceptual loss,the brightness consistency between the reconstructed fresco and the original fresco was enhanced by using the features before activation,while avoiding artificial interference.The experimental results showed that the peak signal-to-noise ratio and structural similarity metrics were improved compared with other algorithms,with an improvement of 0.512 dB-3.016 dB in peak signal-to-noise ratio and 0.009-0.089 in structural similarity,and the proposed method had better visual effects.
文摘A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET imagereconstruction. In the new approach, the projection data is partitioned into disjoint blocks; eachiteration step involves only one of these blocks. SAGE updates the parameters sequentially in eachblock. In experiments, the RBI-SAGE algorithm and classical SAGE algorithm are compared in theapplication on positron emission tomography (PET) image reconstruction. Simulation results show thatRBI-SAGE has better performance than SAGE in both convergence and image quality.
基金The National Natural Science Foundation of China(No.60972130)
文摘In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.
基金The National Natural Science Foundation of China(No.51575256)the Fundamental Research Funds for the Central Universities(No.NP2015101,XZA16003)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant No.12027812)the Guangdong Basic and Applied Basic Research Foundation of Guangdong Province,China(Grant No.2021A1515111031)。
文摘The low-density imaging performance of a zone plate-based nano-resolution hard x-ray computed tomography(CT)system can be significantly improved by incorporating a grating-based Lau interferometer. Due to the diffraction, however,the acquired nano-resolution phase signal may suffer splitting problem, which impedes the direct reconstruction of phase contrast CT(nPCT) images. To overcome, a new model-driven nPCT image reconstruction algorithm is developed in this study. In it, the diffraction procedure is mathematically modeled into a matrix B, from which the projections without signal splitting can be generated invertedly. Furthermore, a penalized weighted least-square model with total variation(PWLSTV) is employed to denoise these projections, from which nPCT images with high accuracy are directly reconstructed.Numerical experiments demonstrate that this new algorithm is able to work with phase projections having any splitting distances. Moreover, results also reveal that nPCT images of higher signal-to-noise-ratio(SNR) could be reconstructed from projections having larger splitting distances. In summary, a novel model-driven nPCT image reconstruction algorithm with high accuracy and robustness is verified for the Lau interferometer-based hard x-ray nano-resolution phase contrast imaging.
基金the National High Technology Research and Development Program of China(Grant No.2012AA011603)
文摘Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.
基金Project supported by the National Basic Research Program of China(Grant No.2006CB7057005)the National High Technology Research and Development Program of China(Grant No.2009AA012200)the National Natural Science Foundation of China (Grant No.60672104)
文摘With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.
文摘A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.
基金This work is supported by Hainan Provincial Natural Science Foundation of China(project number:20166235)project supported by the Education Department of Hainan Province(project number:Hnky2017-57).
文摘Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results.
文摘The purpose of this study is to introduce a novel empirical iterative algorithm for medical image reconstruction, under the short name MRP-ISWLS (Median Root Prior Image Space Weighted Least Squares). Further, we assess the performance of the new algorithm by comparing it to the simultaneous version of known MRP algorithms. All algorithms are compared in terms of cross-correlation and CNRs (Contrast-to-Noise Ratios). As it turns out, MRP-ISWLS presents higher CNRs than the known algorithms for objects of different size. Also MRP-ISWLS has better noise manipulation.
文摘The evaluation approach to the accuracy of the image feature descriptors plays an important role in image feature extraction. We point out that the image shape feature can be described by the Zernike moments set while briefly introducing the basic concept of the Zernike moment. After talking about the image reconstruction technique based on the inverse transformation of Zernike moment, the evaluation approach to the accuracy of the Zernike moments shape feature via the dissimilarity degree and the reconstruction ratio between the original image and the reconstructed image is proposed. The experiment results demonstrate the feasibility of this evaluation approach to image Zernike moments shape feature.
文摘A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron microscope slices by Fou-rier-Bessel synthesis and electron tomography (ET), and a series of computed tomography (CT) was developed to perform si-multaneous measurement on the structure and function of biomedical samples. The paper presents the 3D reconstruction seg-mentation display and analysis results of pollen spore, chaperonin, virus, head, cervical bone, tibia and carpus. At the same time, it also puts forward some potential applications of the new technique in the biomedical realm.
基金Supported by the National Natural Science Foundation of China(61203021)the Key Science and Technology Program of Liaoning Province(2011216011)+1 种基金the Natural Science Foundation of Liaoning Province(2013020024)the Program for Liaoning Excellent Talents in Universities(LJQ2015061)
文摘Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.
基金supported in part by the National Natural Science Foundation of China (61421004,61402316,61333015,61632003)Doctoral Research Fund of Taiyuan University of Science and Technology under grant (20162009)National Key Technologies R&D Program(2016YFB0502002)
文摘An effective approach is proposed for 3D urban scene reconstruction in the form of point cloud with semantic labeling. Starting from high resolution oblique aerial images,our approach proceeds through three main stages: geographic reconstruction, geometrical reconstruction and semantic reconstruction. The absolute position and orientation of all the cameras relative to the real world are recovered in the geographic reconstruction stage. Then, in the geometrical reconstruction stage,an improved multi-view stereo matching method is employed to produce 3D dense points with color and normal information by taking into account the prior knowledge of aerial imagery.Finally the point cloud is classified into three classes(building,vegetation, and ground) by a rule-based hierarchical approach in the semantic reconstruction step. Experiments on complex urban scene show that our proposed 3-stage approach could generate reasonable reconstruction result robustly and efficiently.By comparing our final semantic reconstruction result with the manually labeled ground truth, classification accuracies from86.75% to 93.02% are obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.41904148,41731070,41874175)in part by the Strategic Priority Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15017000,XDA15350201,XDA15052500).
文摘The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we apply the Algebraic Reconstruction Technique(ART)and the minimization of the image Total Variation(TV)method,with a combination of priori knowledge of north–south symmetry,to reconstruct plasmaspheric He+density from simulated EUV images.The results demonstrate that incorporating priori assumption can be particularly useful when the projection data is insufficient.This method has good performance even with a projection angle of less than 150 degrees.The method of our study is expected to have applications in the Soft X-ray Imager(SXI)reconstruction for the Solar wind–Magnetosphere–Ionosphere Link Explorer(SMILE)mission.
文摘Cone-beam CT (CBCT) scanners are based on volumetric tomography, using a 2D extended digital array providing an area detector [1,2]. Compared to traditional CT, CBCT has many advantages, such as less X-ray beam limitation, and rapid scan time, etc. However, in CBCT images the x-ray beam has lower mean kilovolt (peak) energy, so the metal artifact is more pronounced on. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used to replace the pixels inside the metal object with the boundary pixels. The modified projection data, using synthetically Radon Transformation, were then used to reconstruct a new back projected CBCT image. In this paper, we present a method, based on the morphological, area and pixel operators, which we applied on the Radon transformed image, to reduce the metal artifacts in CBCT, then we built the Radon back project images using the radon invers transformation. The artifacts effects on the 3d-reconstruction is that, the soft tissues appears as bones or teeth. For the preprocessing of the CBCT images, two methods are used to recognize the noisy black areas that the first depends on thresholding and closing algorithm, and the second depends on tracing boundaries after using thresholding algorithm too. The intensity of these areas is the lowest in the image than other tissues, so we profit this property to detect the edges of these areas. These two methods are applied on phantom and patient image data. It deals with reconstructed CBCT dicom images and can effectively reduce such metal artifacts. Due to the data of the constructed images are corrupted by these metal artifacts, qualitative and quantitative analysis of CBCT images is very essential.
基金Project(2008041001) supported by the Academician Foundation of China Project(N0601-041) supported by the General Armament Department Science Foundation of China
文摘A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.