Totally three articles focusing on magnetic resonance diffusion tensor imaging and diffusion tensor imaging evaluation of ischemic and hemorrhagic stroke, deep brain tumors and healthy corticospinal tract state are pu...Totally three articles focusing on magnetic resonance diffusion tensor imaging and diffusion tensor imaging evaluation of ischemic and hemorrhagic stroke, deep brain tumors and healthy corticospinal tract state are published in three issues. We hope that our readers find these papers useful to their research.展开更多
With the popularization of high-performance electronic imaging equipment and the wide application of digital image editing software,the threshold of digital image editing becomes lower and lower.Thismakes it easy to t...With the popularization of high-performance electronic imaging equipment and the wide application of digital image editing software,the threshold of digital image editing becomes lower and lower.Thismakes it easy to trick the human visual system with professionally altered images.These tampered images have brought serious threats to many fields,including personal privacy,news communication,judicial evidence collection,information security and so on.Therefore,the security and reliability of digital information has been increasingly concerned by the international community.In this paper,digital image tamper detection methods are classified according to the clues that they rely on,detection methods based on image content and detection methods based on double JPEG compression traces.This paper analyzes and discusses the important algorithms in several classification methods,and summarizes the problems existing in various methods.Finally,this paper predicts the future development trend of tamper detection.展开更多
Ray tracing Particle Image Velocimetry(RT-PIV)is an optical technique for high resolution velocity measurements in challenging optical systems,such as transparent packed beds,that uses ray tracing to correct for disto...Ray tracing Particle Image Velocimetry(RT-PIV)is an optical technique for high resolution velocity measurements in challenging optical systems,such as transparent packed beds,that uses ray tracing to correct for distortions introduced by transparent geometries in the light paths.The ray tracing based correction is a post processing step applied to the raw PIV particle images before classical PIV evaluation.In this study,RT-PIV is performed in the top layer of a body centred cubic(bcc)sphere packing with gaseous flow,where optical access is obtained by the use of transparent N-BK7 glass balls with a diameter of d=40 mm.RT-PIV introduces new experimental and numerical challenges,for example a limited field of view,illumination difficulties,a very large required depth of field and high sensitivity to geometric parameters used in the ray tracing correction.These challenges and their implications are the main scope and discussed in the present work.Further,the validation of the ray tracing reconstruction step is presented and examples for the obtained corrected vector fields in a packed bed are given.The results show the strength of the method in reconstructing velocity fields behind transparent spheres that would not have been accessible by optical measurement techniques without the ray tracing correction.展开更多
We report an imaging method of zircon U-Pb dating with NanoSIMS 50 L, which overcomes the significant U-Pb fractionation as the pit was sputtered deeper during conventional spot mode analysis and can be applied to irr...We report an imaging method of zircon U-Pb dating with NanoSIMS 50 L, which overcomes the significant U-Pb fractionation as the pit was sputtered deeper during conventional spot mode analysis and can be applied to irregular small grains or heterogeneous areas of zircon. The U-Pb and Pb-Pb ages can be acquired simultaneously for 2 μm×2 μm(for small grains) or 1 μm×9 μm(for zoned grains), together with Zr, Y and other trace elements distributions. Using zircon M257 as standard, the U-Pb ages of other zircon standards, including Qinghu, Plesovice, Temora and 91500, were measured to(2σ) as158.8±0.8, 335.9±3.4, 412.0±12 and 1067±12 Ma, respectively, consistent with the recommended values within the analytical uncertainties. Tiny zircon grains in the impact melt breccia of the lunar meteorite SaU 169 were also measured in this study,with a Pb-Pb age of 3912±14 Ma and a U-Pb age of 3917±17 Ma, similar to previous results reported for the same meteorite.The imaging method was also applied to determine U-Pb age of the thin overgrowth rims of Longtan metamorphic zircon, with a Pb-Pb age of 1933±27 Ma and a U-Pb age of 1935±25 Ma, clearly distinct from the Pb-Pb age of 2098±61 Ma and the U-Pb age of 2054±40 Ma for detrital cores.展开更多
The dynamic mechanism of the vortex generation and evolution process in a fully developed turbulent boundary layer with Reθ=97-194 is experimentally investigated.In this study,a moving single-frame and long-exposure(...The dynamic mechanism of the vortex generation and evolution process in a fully developed turbulent boundary layer with Reθ=97-194 is experimentally investigated.In this study,a moving single-frame and long-exposure(MSFLE)imaging method and a moving particle image velocimetry/particle tracing velocimetry(M-PIV/PTV)are designed and implemented for measuring the temporal and spatial evolution of vortex cores in both qualitative and quantitative ways,respectively.On the other hand,the Liutex vector,which is a new mathematical definition and identification of the vortex core proposed by Liu’s group,is first applied in the experiment for the structural visualization and quantitative analysis of the local fluid rotation.The results show that an intuitional process of vortex evolution can be clearly observed by tracking the vortex using MSFLE and verify that the roll-up of the shear layer induced by shear instability is the origin of vortex formation in turbulence.Furthermore,a quantitative investigation in terms of the critical vortex core boundary(size)and its accurate rotation strength is carried out based on the Liutex vector field analysis by M-PIV/PTV.According to statistics of the relation between vortex core size and the rotation strength during the whole process,the physical mechanism of vortex generation and evolution in a turbulent boundary layer of low Reynolds number can be summarized as a four-dominant-state course consisting of the“synchronous linear segment(SL)-absolute enhancement segment(AE)-absolute diffusion segment(AD)-skewing dissipation segment(SD)”.展开更多
文摘Totally three articles focusing on magnetic resonance diffusion tensor imaging and diffusion tensor imaging evaluation of ischemic and hemorrhagic stroke, deep brain tumors and healthy corticospinal tract state are published in three issues. We hope that our readers find these papers useful to their research.
文摘With the popularization of high-performance electronic imaging equipment and the wide application of digital image editing software,the threshold of digital image editing becomes lower and lower.Thismakes it easy to trick the human visual system with professionally altered images.These tampered images have brought serious threats to many fields,including personal privacy,news communication,judicial evidence collection,information security and so on.Therefore,the security and reliability of digital information has been increasingly concerned by the international community.In this paper,digital image tamper detection methods are classified according to the clues that they rely on,detection methods based on image content and detection methods based on double JPEG compression traces.This paper analyzes and discusses the important algorithms in several classification methods,and summarizes the problems existing in various methods.Finally,this paper predicts the future development trend of tamper detection.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-Project-ID 422037413-TRR 287.Peter Kovats and our student Zahin Thamed are acknowledged for their help during experiments.
文摘Ray tracing Particle Image Velocimetry(RT-PIV)is an optical technique for high resolution velocity measurements in challenging optical systems,such as transparent packed beds,that uses ray tracing to correct for distortions introduced by transparent geometries in the light paths.The ray tracing based correction is a post processing step applied to the raw PIV particle images before classical PIV evaluation.In this study,RT-PIV is performed in the top layer of a body centred cubic(bcc)sphere packing with gaseous flow,where optical access is obtained by the use of transparent N-BK7 glass balls with a diameter of d=40 mm.RT-PIV introduces new experimental and numerical challenges,for example a limited field of view,illumination difficulties,a very large required depth of field and high sensitivity to geometric parameters used in the ray tracing correction.These challenges and their implications are the main scope and discussed in the present work.Further,the validation of the ray tracing reconstruction step is presented and examples for the obtained corrected vector fields in a packed bed are given.The results show the strength of the method in reconstructing velocity fields behind transparent spheres that would not have been accessible by optical measurement techniques without the ray tracing correction.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 41430105, 41490631, 41573057 & 41521062)
文摘We report an imaging method of zircon U-Pb dating with NanoSIMS 50 L, which overcomes the significant U-Pb fractionation as the pit was sputtered deeper during conventional spot mode analysis and can be applied to irregular small grains or heterogeneous areas of zircon. The U-Pb and Pb-Pb ages can be acquired simultaneously for 2 μm×2 μm(for small grains) or 1 μm×9 μm(for zoned grains), together with Zr, Y and other trace elements distributions. Using zircon M257 as standard, the U-Pb ages of other zircon standards, including Qinghu, Plesovice, Temora and 91500, were measured to(2σ) as158.8±0.8, 335.9±3.4, 412.0±12 and 1067±12 Ma, respectively, consistent with the recommended values within the analytical uncertainties. Tiny zircon grains in the impact melt breccia of the lunar meteorite SaU 169 were also measured in this study,with a Pb-Pb age of 3912±14 Ma and a U-Pb age of 3917±17 Ma, similar to previous results reported for the same meteorite.The imaging method was also applied to determine U-Pb age of the thin overgrowth rims of Longtan metamorphic zircon, with a Pb-Pb age of 1933±27 Ma and a U-Pb age of 1935±25 Ma, clearly distinct from the Pb-Pb age of 2098±61 Ma and the U-Pb age of 2054±40 Ma for detrital cores.
基金supported by the National Natural Science Foundation of China(Grants Nos.51906154,51576130)the National Science and Technology Major Project(Grant No.2017-V-0016-0069).
文摘The dynamic mechanism of the vortex generation and evolution process in a fully developed turbulent boundary layer with Reθ=97-194 is experimentally investigated.In this study,a moving single-frame and long-exposure(MSFLE)imaging method and a moving particle image velocimetry/particle tracing velocimetry(M-PIV/PTV)are designed and implemented for measuring the temporal and spatial evolution of vortex cores in both qualitative and quantitative ways,respectively.On the other hand,the Liutex vector,which is a new mathematical definition and identification of the vortex core proposed by Liu’s group,is first applied in the experiment for the structural visualization and quantitative analysis of the local fluid rotation.The results show that an intuitional process of vortex evolution can be clearly observed by tracking the vortex using MSFLE and verify that the roll-up of the shear layer induced by shear instability is the origin of vortex formation in turbulence.Furthermore,a quantitative investigation in terms of the critical vortex core boundary(size)and its accurate rotation strength is carried out based on the Liutex vector field analysis by M-PIV/PTV.According to statistics of the relation between vortex core size and the rotation strength during the whole process,the physical mechanism of vortex generation and evolution in a turbulent boundary layer of low Reynolds number can be summarized as a four-dominant-state course consisting of the“synchronous linear segment(SL)-absolute enhancement segment(AE)-absolute diffusion segment(AD)-skewing dissipation segment(SD)”.