We describe a new BVRI multicolor CCD photometric system situated at the prime focus of the 85-cm telescope at the Xinglong Station of NAOC. Atmospheric extinction effects, photometric accuracy and color calibration d...We describe a new BVRI multicolor CCD photometric system situated at the prime focus of the 85-cm telescope at the Xinglong Station of NAOC. Atmospheric extinction effects, photometric accuracy and color calibration dependence of the system are investigated. Additional attention was paid to giving observers guidance in estimating throughput, detection limit, signal-to-noise ratio and exposure time.展开更多
Cervical cancer is the one of the most common cancer in female patients inThailand. Radiotherapy has the role for the treatment of cervical cancer by postoperative, radical and palliative treatments. For radical radio...Cervical cancer is the one of the most common cancer in female patients inThailand. Radiotherapy has the role for the treatment of cervical cancer by postoperative, radical and palliative treatments. For radical radiotherapy, the combination of external beam radiation therapy and brachytherapy will be used to increase the tumor dose to curative goal. With the new development of medical images (Computed tomography (CT), Magnetic Resonance Imaging (MRI) or Ultrasonography (US)), the treatment with brachytherapy will be developed from point-based to volume-based concepts. Many studies reported the benefit of image-based brachytherapy over conventional brachytherapy and clinical benefit of using image-based brachytherapy in the treatment of cervical cancer.展开更多
We describe the design and construction of a new rapid 3-channel CCD photometer, dedicated to simultaneous multicolor photometric observations of rapidly variable objects. This photometer is equipped on the 1-meter te...We describe the design and construction of a new rapid 3-channel CCD photometer, dedicated to simultaneous multicolor photometric observations of rapidly variable objects. This photometer is equipped on the 1-meter telescope at the Xinglong Observatory. It allows simultaneous imaging within fields of view of 18.81′×18.8′, 18.2′×17.6′ and 9.2′×9.2′ in the Sloan Digital Sky Survey's g′, r′ and i′ bands, respectively. The results of its calibration and performance are reported.展开更多
Image-based rendering is important both in the field of computer graphics and computer vision,and it is also widely used in virtual reality technology.For more than two decades,people have done a lot of work on the re...Image-based rendering is important both in the field of computer graphics and computer vision,and it is also widely used in virtual reality technology.For more than two decades,people have done a lot of work on the research of image-based rendering,and these methods can be divided into two categories according to whether the geometric information of the scene is utilized.According to this classification,we introduce some classical methods and representative methods proposed in recent years.We also compare and analyze the basic principles,advantages and disadvantages of different methods.Finally,some suggestions are given for research directions on image-based rendering techniques in the future.展开更多
An aluminum matrix syntactic foam, incorporated with hollow-structured fly ash particles, was fabricated by pressure infiltration technique. X-ray micro-computed tomography was used to characterize its heterogeneous m...An aluminum matrix syntactic foam, incorporated with hollow-structured fly ash particles, was fabricated by pressure infiltration technique. X-ray micro-computed tomography was used to characterize its heterogeneous microstructure three dimensionally (3D). The quantification of some microstructure features, such as content and size distribution of hollow fly ash particles, was acquired in 3D. The tomographic data were exploited as a rapid method to generate a microstructurally accurate and robust 3D meshed model. The thermal transport behavior has been modeled using a commercial finite-element code to conduct steady state analyses. Simulation of the thermal conductivity showed good correlation with experimental result.展开更多
Durable press finishing of cotton fabrics with polycarboxylic acid increases fabric wrinkle-resistance at the expense of its mechanical strength. Severe tensile strength loss is the major disadvantage for wrinkle resi...Durable press finishing of cotton fabrics with polycarboxylic acid increases fabric wrinkle-resistance at the expense of its mechanical strength. Severe tensile strength loss is the major disadvantage for wrinkle resistant cotton fabrics.Tensile strength loss of cotton fabric crosslinked by a polycarboxylic acid can be attributed to depolymerization and crosslink of cellulose molecules. Measurement of the molecular weight of cotton fabric before and after crosslinked by polycarboxylic acids can offer a possibility of direct understanding of the depolymerization. In this research, amultiple angle laser light scattering photometer was used todetermine the absolute molecular weight of cotton fabric treated with BTCA at different pH and then hydrolyzed with 0. 5 M NaOH solution at 50℃ for 144 h. The results indicate that average molecular weights of cotton fabric treated with polycarboxylic acids at different pH are almost the same.展开更多
Photometric technology,characterized by its compact structure and relatively high stability,finds wide application in measuring airglow spectra.This instrumentation is anticipated to assume a pivotal role as the prima...Photometric technology,characterized by its compact structure and relatively high stability,finds wide application in measuring airglow spectra.This instrumentation is anticipated to assume a pivotal role as the primary equipment for extensive network observations of middle and upper atmospheric temperatures in China,thereby providing crucial support for space environmental monitoring and atmospheric dynamic research.Nevertheless,susceptibility to various factors such as instrument inconsistency,variability in observation conditions,and alterations in the background atmospheric environment across different stations poses a challenge,potentially resulting in data inconsistencies in network observations.In response to these challenges,we propose a multiple-parameter iterative inversion(MPII)algorithm for temperature retrieval based on a mesospheric airglow spectrum photometer(MASP)developed by our research group.This algorithm accurately identifies the center of the image circle,corrects image distortion,and thereby obtains an accurate synthetic spectrum reflective of actual observations.It encompasses five adjustable parameters:sky background light,atmospheric temperature,filter temperature,optical system focal length,and degree of synthetic spectrum modulation.Compared to traditional methods,significant enhancements in the accuracy of the inverted temperature are achieved.To validate the effectiveness of the MPII algorithm,we conducted combined active and passive remote sensing synchronous measurements using MASP in conjunction with a sodium fluorescence Doppler lidar developed by the National Space Science Center.By utilizing the lidar temperature as a reference,atmospheric background radiation is mitigated from the MASP data,and the temperature is inverted using the MPII algorithm.Comparative analysis with the traditional method reveals that temperatures calculated by the MPII algorithm exhibit better consistency than those observed by the lidar.展开更多
The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic materials by reducing the degree of freedoms(DOFs).A basic framework of the Multiscale Scaled Boundary Fini...The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic materials by reducing the degree of freedoms(DOFs).A basic framework of the Multiscale Scaled Boundary Finite Element Method(MsSBFEM)was presented in our previous works,but those works only addressed two-dimensional problems.In order to solve more realistic problems,a three-dimensional MsSBFEM is further developed in this article.In the proposed method,the octree SBFEM is used to deal with the three-dimensional calculation for numerical base functions to bridge small and large scales,the three-dimensional image-based analysis can be conveniently conducted in small-scale and coarse nodes can be flexibly adjusted to improve the computational accuracy.Besides,the Temporally Piecewise Adaptive Algorithm(TPAA)is used to maintain the computational accuracy of multiscale analysis by adaptive calculation in time domain.The results of numerical examples show that the proposed method can significantly reduce the DOFs for three-dimensional viscoelastic analysis with good accuracy.For instance,the DOFs can be reduced by 9021 times compared with Direct Numerical Simulation(DNS)with an average error of 1.87%in the third example,and it is very effective in dealing with three-dimensional complex microstructures directly based on images without any geometric modelling process.展开更多
基金Supported by the National Natural Science Foundation of China.
文摘We describe a new BVRI multicolor CCD photometric system situated at the prime focus of the 85-cm telescope at the Xinglong Station of NAOC. Atmospheric extinction effects, photometric accuracy and color calibration dependence of the system are investigated. Additional attention was paid to giving observers guidance in estimating throughput, detection limit, signal-to-noise ratio and exposure time.
文摘Cervical cancer is the one of the most common cancer in female patients inThailand. Radiotherapy has the role for the treatment of cervical cancer by postoperative, radical and palliative treatments. For radical radiotherapy, the combination of external beam radiation therapy and brachytherapy will be used to increase the tumor dose to curative goal. With the new development of medical images (Computed tomography (CT), Magnetic Resonance Imaging (MRI) or Ultrasonography (US)), the treatment with brachytherapy will be developed from point-based to volume-based concepts. Many studies reported the benefit of image-based brachytherapy over conventional brachytherapy and clinical benefit of using image-based brachytherapy in the treatment of cervical cancer.
文摘We describe the design and construction of a new rapid 3-channel CCD photometer, dedicated to simultaneous multicolor photometric observations of rapidly variable objects. This photometer is equipped on the 1-meter telescope at the Xinglong Observatory. It allows simultaneous imaging within fields of view of 18.81′×18.8′, 18.2′×17.6′ and 9.2′×9.2′ in the Sloan Digital Sky Survey's g′, r′ and i′ bands, respectively. The results of its calibration and performance are reported.
基金National Natural Science Foundation of China(61632003).
文摘Image-based rendering is important both in the field of computer graphics and computer vision,and it is also widely used in virtual reality technology.For more than two decades,people have done a lot of work on the research of image-based rendering,and these methods can be divided into two categories according to whether the geometric information of the scene is utilized.According to this classification,we introduce some classical methods and representative methods proposed in recent years.We also compare and analyze the basic principles,advantages and disadvantages of different methods.Finally,some suggestions are given for research directions on image-based rendering techniques in the future.
基金Funded by the National Natural Science Foundation of China (No. 51001037)the Fundamental Research Funds for the Central Universities (No. HIT.NSRIF.2013003)
文摘An aluminum matrix syntactic foam, incorporated with hollow-structured fly ash particles, was fabricated by pressure infiltration technique. X-ray micro-computed tomography was used to characterize its heterogeneous microstructure three dimensionally (3D). The quantification of some microstructure features, such as content and size distribution of hollow fly ash particles, was acquired in 3D. The tomographic data were exploited as a rapid method to generate a microstructurally accurate and robust 3D meshed model. The thermal transport behavior has been modeled using a commercial finite-element code to conduct steady state analyses. Simulation of the thermal conductivity showed good correlation with experimental result.
基金The Project-sponsored by SRF for ROCS, SEM and EYTP of MOE
文摘Durable press finishing of cotton fabrics with polycarboxylic acid increases fabric wrinkle-resistance at the expense of its mechanical strength. Severe tensile strength loss is the major disadvantage for wrinkle resistant cotton fabrics.Tensile strength loss of cotton fabric crosslinked by a polycarboxylic acid can be attributed to depolymerization and crosslink of cellulose molecules. Measurement of the molecular weight of cotton fabric before and after crosslinked by polycarboxylic acids can offer a possibility of direct understanding of the depolymerization. In this research, amultiple angle laser light scattering photometer was used todetermine the absolute molecular weight of cotton fabric treated with BTCA at different pH and then hydrolyzed with 0. 5 M NaOH solution at 50℃ for 144 h. The results indicate that average molecular weights of cotton fabric treated with polycarboxylic acids at different pH are almost the same.
基金supported by the National Key Research and Development Program(Grant No.2021YFC2802502)the National Natural Science Foundation of China(Grant No.42374223)。
文摘Photometric technology,characterized by its compact structure and relatively high stability,finds wide application in measuring airglow spectra.This instrumentation is anticipated to assume a pivotal role as the primary equipment for extensive network observations of middle and upper atmospheric temperatures in China,thereby providing crucial support for space environmental monitoring and atmospheric dynamic research.Nevertheless,susceptibility to various factors such as instrument inconsistency,variability in observation conditions,and alterations in the background atmospheric environment across different stations poses a challenge,potentially resulting in data inconsistencies in network observations.In response to these challenges,we propose a multiple-parameter iterative inversion(MPII)algorithm for temperature retrieval based on a mesospheric airglow spectrum photometer(MASP)developed by our research group.This algorithm accurately identifies the center of the image circle,corrects image distortion,and thereby obtains an accurate synthetic spectrum reflective of actual observations.It encompasses five adjustable parameters:sky background light,atmospheric temperature,filter temperature,optical system focal length,and degree of synthetic spectrum modulation.Compared to traditional methods,significant enhancements in the accuracy of the inverted temperature are achieved.To validate the effectiveness of the MPII algorithm,we conducted combined active and passive remote sensing synchronous measurements using MASP in conjunction with a sodium fluorescence Doppler lidar developed by the National Space Science Center.By utilizing the lidar temperature as a reference,atmospheric background radiation is mitigated from the MASP data,and the temperature is inverted using the MPII algorithm.Comparative analysis with the traditional method reveals that temperatures calculated by the MPII algorithm exhibit better consistency than those observed by the lidar.
基金NSFC Grants(12072063,11972109)Grant of State Key Laboratory of Structural Analysis for Industrial Equipment(S22403)+1 种基金National Key Research and Development Program of China(2020YFB1708304)Alexander von Humboldt Foundation(1217594).
文摘The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic materials by reducing the degree of freedoms(DOFs).A basic framework of the Multiscale Scaled Boundary Finite Element Method(MsSBFEM)was presented in our previous works,but those works only addressed two-dimensional problems.In order to solve more realistic problems,a three-dimensional MsSBFEM is further developed in this article.In the proposed method,the octree SBFEM is used to deal with the three-dimensional calculation for numerical base functions to bridge small and large scales,the three-dimensional image-based analysis can be conveniently conducted in small-scale and coarse nodes can be flexibly adjusted to improve the computational accuracy.Besides,the Temporally Piecewise Adaptive Algorithm(TPAA)is used to maintain the computational accuracy of multiscale analysis by adaptive calculation in time domain.The results of numerical examples show that the proposed method can significantly reduce the DOFs for three-dimensional viscoelastic analysis with good accuracy.For instance,the DOFs can be reduced by 9021 times compared with Direct Numerical Simulation(DNS)with an average error of 1.87%in the third example,and it is very effective in dealing with three-dimensional complex microstructures directly based on images without any geometric modelling process.