Accurate segmentation of tumor images is a key core technology for the diagnosis and treatment of tumor diseases.In this paper,we analyze a variety of novel and targeted algorithms to solve these problems,summarize,an...Accurate segmentation of tumor images is a key core technology for the diagnosis and treatment of tumor diseases.In this paper,we analyze a variety of novel and targeted algorithms to solve these problems,summarize,and elaborate the method based on multimodal tumor image processing given the characteristics of serious grayscale inhomogeneity,texture instability,and diversity complexity of tumor images.展开更多
Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-...Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-aided therapy, has been widely used in the treatment of uterine fibroids. However, such segmentation in HIFU remains challenge for two reasons: (1) the blurry or missing boundaries of lesion regions in the HIFU images and (2) the deformation of uterine fibroids caused by the patient's breathing or an external force during the US imaging process, which can lead to complex shapes of lesion regions. These factors have prevented classical active contour-based segmentation methods from yielding desired results for uterine fibroids in US images. In this paper, a novel active contour-based segmentation method is proposed, which utilizes the correlation information of target shapes among a sequence of images as prior knowledge to aid the existing active contour method. This prior knowledge can be interpreted as a unsupervised clustering of shapes prior modeling. Meanwhile, it is also proved that the shapes correlation has the low-rank property in a linear space, and the theory of matrix recovery is used as an effective tool to impose the proposed prior on an existing active contour model. Finally, an accurate method is developed to solve the proposed model by using the Augmented Lagrange Multiplier (ALM). Experimental results from both synthetic and clinical uterine fibroids US image sequences demonstrate that the proposed method can consistently improve the performance of active contour models and increase the robustness against missing or misleading boundaries, and can greatly improve the efficiency of HIFU therapy.展开更多
Lots of noises and heterogeneous objects with various sizes coexist in a complex image,such as an ore image;the classical image thresholding method cannot effectively distinguish between ores.To segment ore objects wi...Lots of noises and heterogeneous objects with various sizes coexist in a complex image,such as an ore image;the classical image thresholding method cannot effectively distinguish between ores.To segment ore objects with various sizes simultaneously,two adaptive windows in the image were chosen for each pixel;the gray value of windows was calculated by Otsu's threshold method.To extract the object skeleton,the definition principle of distance transformation templates was proposed.The ores linked together in a binary image were separated by distance transformation and gray reconstruction.The seed region of each object was picked up from the local maximum gray region of the reconstruction image.Starting from these seed regions,the watershed method was used to segment ore object effectively.The proposed algorithm marks and segments most objects from complex images precisely.展开更多
In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid betwee...In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm.展开更多
Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we p...Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we propose an improved Mean Shift Algorithm in consideration of the characteristics of these images. First, images were classified into several homogeneous color regions and texture regions by conducting variance detection on the color space. Next, each homogeneous color region was directly segmented to generate the preliminary results by applying the Mean Shift Algorithm. For each texture region, we conduct a high-dimensional feature space by extracting information such as color, texture and shape comprehensively, and work out a proper bandwidth according to the normalized distribution density. Then the bandwidth variable Mean Shift Algorithm was applied to obtain segmentation results by conducting the pattern classification in feature space. Last, the final results were obtained by merging these regions by means of the constructed cost functions and removing the oversegmented regions from the merged regions. It has been experimentally segmented on the high spatial resolution remote sensing images collected by Quickbird and Unmanned Aerial Vehicle(UAV). We put forward an approach to evaluate the segmentation results by using the segmentation matching index(SMI). This takes into consideration both the area and the spectrum. The experimental results suggest that the improved Mean Shift Algorithm outperforms the conventional one in terms of accuracy of segmentation.展开更多
Magnetic resonance imaging(MRI)has been a prevalence technique for breast cancer diagnosis.Computer-aided detection and segmentation of lesions from MRIs plays a vital role for the MRI-based disease analysis.There are...Magnetic resonance imaging(MRI)has been a prevalence technique for breast cancer diagnosis.Computer-aided detection and segmentation of lesions from MRIs plays a vital role for the MRI-based disease analysis.There are two main issues of the existing breast lesion segmentation techniques:requir ing manual delineation of Regions of Interests(ROIs)as a step of initialization;and requiring a large amount of labeled images for model construction or parameter lear ning,while in real clinical or experimental settings,it is highly challenging to get suficient labeled MRIs.To resolve these issues,this work proposes a semi-supervised method for breast tumor segmentation based on super voxel strategies.After image segmentation with advanced cluster techniques,we take a supervised learning step to classify the tumor and nontumor patches in order to automatically locate the tumor regions in an MRI To obtain the opt imal performance of tumor extraction,we take extensive experiments to learn par ameters for tumor segmentation and dassification,and design 225 classifiers corresponding to diferent parameter settings.We call the proposed method as Semi supervised Tumor Segmentation(SSTS),and apply it to both mass and nonmass lesions.Experimental results show better performance of SsTS compared with five state of-the art methods.展开更多
Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the sup...Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.展开更多
Leukaemia is a type of blood cancer that is caused by undeveloped White Blood Cells(WBC),and it is also called a blast blood cell.In the marrow of human bones,leukaemia is developed and is responsible for blood cell g...Leukaemia is a type of blood cancer that is caused by undeveloped White Blood Cells(WBC),and it is also called a blast blood cell.In the marrow of human bones,leukaemia is developed and is responsible for blood cell generation with leukocytes and WBC,and if any cell gets blasted,then it may become a cause of death.Therefore,the diagnosis of leukaemia in its early stages helps greatly in the treatment along with saving human lives.Subsequently,in terms of detection,image segmentation techniques play a vital role,and they turn out to be the important image processing steps for the extraction of feature patterns from the Acute Lymphoblastic Leukaemia(ALL)type of blood cancer.Moreover,the image segmentation technique focuses on the division of cells by segmenting a microscopic image into background and cancer blood cell nucleus,which is well-known as the Region Of Interest(ROI).As a result,in this article,we attempt to build a segmentation technique capable of solving blood cell nucleus segmentation issues using four distinct scenarios,including K-means,FCM(Fuzzy Cmeans),K-means with FFA(Firefly Algorithm),and FCM with FFA.Also,we determine the most effective method of blood cell nucleus segmentation,which we subsequently use for the Leukaemia classification model.Finally,using the Convolution Neural Network(CNN)as a classifier,we developed a leukaemia cancer classification model from the microscopic images.The proposed system’s classification accuracy is tested using the CNN to test the model on the ALL-IDB dataset and equate it to the current state of the art.In terms of experimental analysis,we observed that the accuracy of the model is near to 99%,and it is far better than other existing models that are designed to segment and classify the types of leukaemia cancer in terms of ALL.展开更多
Lupus Nephritis(LN)is a significant risk factor for morbidity and mortality in systemic lupus erythematosus,and nephropathology is still the gold standard for diagnosing LN.To assist pathologists in evaluating histopa...Lupus Nephritis(LN)is a significant risk factor for morbidity and mortality in systemic lupus erythematosus,and nephropathology is still the gold standard for diagnosing LN.To assist pathologists in evaluating histopathological images of LN,a 2D Rényi entropy multi-threshold image segmentation method is proposed in this research to apply to LN images.This method is based on an improved Cuckoo Search(CS)algorithm that introduces a Diffusion Mechanism(DM)and an Adaptiveβ-Hill Climbing(AβHC)strategy called the DMCS algorithm.The DMCS algorithm is tested on 30 benchmark functions of the IEEE CEC2017 dataset.In addition,the DMCS-based multi-threshold image segmentation method is also used to segment renal pathological images.Experimental results show that adding these two strategies improves the DMCS algorithm's ability to find the optimal solution.According to the three image quality evaluation metrics:PSNR,FSIM,and SSIM,the proposed image segmentation method performs well in image segmentation experiments.Our research shows that the DMCS algorithm is a helpful image segmentation method for renal pathological images.展开更多
Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich textur...Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich texture details of remote sensing images. We proposed a new segmentation method based on Adaptive Genetic Algorithm(AGA) and Alternative Fuzzy C-Means(AFCM) . Segmentation thresholds were identified by AGA. Then the image was segmented by AFCM. The results indicate that the precision and the speed of segmentation have been greatly increased,and the accuracy of threshold selection is much higher compared with traditional Otsu and Fuzzy C-Means(FCM) segmentation methods. The segmentation results also show that multi-thresholds segmentation has been achieved by combining AGA with AFCM.展开更多
This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin(H&E)stained histopathology images.The purpose of this study is to overcome the challenges faced in automat...This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin(H&E)stained histopathology images.The purpose of this study is to overcome the challenges faced in automated nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining protocols,as well as the segmentation of variable-sized and overlapping nuclei.To this extent,the approach proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks(CNN)architectures as encoder backbones,along with stain normalization and test time augmentation,to improve segmentation accuracy.Additionally,this paper employs a Structure-Preserving Color Normalization(SPCN)technique as a preprocessing step for stain normalization.The proposed model was trained and tested on both single-organ and multi-organ datasets,yielding an F1 score of 84.11%,mean Intersection over Union(IoU)of 81.67%,dice score of 84.11%,accuracy of 92.58%and precision of 83.78%on the multi-organ dataset,and an F1 score of 87.04%,mean IoU of 86.66%,dice score of 87.04%,accuracy of 96.69%and precision of 87.57%on the single-organ dataset.These findings demonstrate that the proposed model ensemble coupled with the right pre-processing and post-processing techniques enhances nuclei segmentation capabilities.展开更多
A leukocyte segmentation method based on S component and B component images is proposed.Threshold segmentation operation is applied to get two binary images in S component and B component images.The samples used in th...A leukocyte segmentation method based on S component and B component images is proposed.Threshold segmentation operation is applied to get two binary images in S component and B component images.The samples used in this study are peripheral blood smears.It is easy tofind from the two binary images that gray values are the same at every corresponding pixels in theleukocyte cytoplasm region,but opposite in the other regions.The feature shows that "IMAGEAND"operation can be employed on the two binary images to segment the cytoplasm region ofleukocyte.By doing"IMAGE XOR"operation between cytoplasn region and nucleus region,theleukocyte segment ation can be retrieved effectively.The segmentation accuracy is evaluated by comparing the segmentation result of the proposed method with the manual segmentation by ahematologist.Experiment results show that the proposed method is of a higher segmentationaccuracy and it also performs well when leukocytes overlap_with erythrocytes.The averagesegmentation accuracy of the proposed method reaches 97.7%for segmenting five types ofleukocyte.Good segmentation results provide an important foundation for leukocytes aut omaticrecognition.展开更多
Aiming at the problem that the existence of disturbances on the edges of light-stripe makes the segmentation of the light-stripes images difficult, a new segmentation algorithm based on edge-searching is presented. It...Aiming at the problem that the existence of disturbances on the edges of light-stripe makes the segmentation of the light-stripes images difficult, a new segmentation algorithm based on edge-searching is presented. It firstly calculates every edge pixel's horizontal coordinate grads to produce the corresponding grads-edge, then uses a designed length-variable l D template to scan the light-stripes' grads-edges. The template is able to find the disturbances with different width utilizing the distributing character of the edge disturbances. The found disturbances are eliminated finally. The algorithm not only can smoothly segment the light-stripes images, but also eliminate most disturbances on the light-stripes' edges without damaging the light-stripes images' 3D information. A practical example of using the proposed algorithm is given in the end. It is proved that the efficiency of the algorithm has been improved obviously by comparison.展开更多
Multispectral imaging (MSI) technique is often used to capture imagesof the fundus by illuminating it with different wavelengths of light. However,these images are taken at different points in time such that eyeball m...Multispectral imaging (MSI) technique is often used to capture imagesof the fundus by illuminating it with different wavelengths of light. However,these images are taken at different points in time such that eyeball movementscan cause misalignment between consecutive images. The multispectral imagesequence reveals important information in the form of retinal and choroidal bloodvessel maps, which can help ophthalmologists to analyze the morphology of theseblood vessels in detail. This in turn can lead to a high diagnostic accuracy of several diseases. In this paper, we propose a novel semi-supervised end-to-end deeplearning framework called “Adversarial Segmentation and Registration Nets”(ASRNet) for the simultaneous estimation of the blood vessel segmentation andthe registration of multispectral images via an adversarial learning process. ASRNet consists of two subnetworks: (i) A segmentation module S that fulfills theblood vessel segmentation task, and (ii) A registration module R that estimatesthe spatial correspondence of an image pair. Based on the segmention-drivenregistration network, we train the segmentation network using a semi-supervisedadversarial learning strategy. Our experimental results show that the proposedASRNet can achieve state-of-the-art accuracy in segmentation and registrationtasks performed with real MSI datasets.展开更多
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ...Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.展开更多
Stroke and heart attack,which could be led by a kind of cerebrovascular and cardiovascular disease named as atherosclerosis,would seriously cause human morbidity and mortality.It is important for the early stage diagn...Stroke and heart attack,which could be led by a kind of cerebrovascular and cardiovascular disease named as atherosclerosis,would seriously cause human morbidity and mortality.It is important for the early stage diagnosis and monitoring medical intervention of the atherosclerosis.Carotid stenosis is a classical atherosclerotic lesion with vessel wall narrowing down and accumulating plaques burden.The carotid artery of intima-media thickness(IMT)is a key indicator to the disease.With the development of computer assisted diagnosis technology,the imaging techniques,segmentation algorithms,measurement methods,and evaluation tools have made considerable progress.Ultrasound imaging,being real-time,economic,reliable,and safe,now seems to become a standard in vascular assessment methodology especially for the measurement of IMT.This review firstly attempts to discuss the clinical relevance of measurements in clinical practice at first,and then followed by the challenges that one has to face when approaching the segmentation of ultrasound images.Secondly,the commonly used methods for the IMT segmentation and measurement are presented.Thirdly,discussion and evaluation of different segmentation techniques are performed.An overview of summary and future perspectives is given finally.展开更多
Objective and quantitative assessment of skin conditions is essential for cosmeceutical studies and research on skin aging and skin regeneration.Various handcraft-based image processing methods have been proposed to e...Objective and quantitative assessment of skin conditions is essential for cosmeceutical studies and research on skin aging and skin regeneration.Various handcraft-based image processing methods have been proposed to evaluate skin conditions objectively,but they have unavoidable disadvantages when used to analyze skin features accurately.This study proposes a hybrid segmentation scheme consisting of Deeplab v3+with an Inception-ResNet-v2 backbone,LightGBM,and morphological processing(MP)to overcome the shortcomings of handcraft-based approaches.First,we apply Deeplab v3+with an Inception-ResNet-v2 backbone for pixel segmentation of skin wrinkles and cells.Then,LightGBM and MP are used to enhance the pixel segmentation quality.Finally,we determine several skin features based on the results of wrinkle and cell segmentation.Our proposed segmentation scheme achieved a mean accuracy of 0.854,mean of intersection over union of 0.749,and mean boundary F1 score of 0.852,which achieved 1.1%,6.7%,and 14.8%improvement over the panoptic-based semantic segmentation method,respectively.展开更多
The effective method of the recognition of underwater complex objects in sonar image is to segment sonar image into target, shadow and sea-bottom reverberation regions and then extract the edge of the object. Because ...The effective method of the recognition of underwater complex objects in sonar image is to segment sonar image into target, shadow and sea-bottom reverberation regions and then extract the edge of the object. Because of the time-varying and space-varying characters of underwater acoustics environment, the sonar images have poor quality and serious speckle noise, so traditional image segmentation is unable to achieve precise segmentation. In the paper, the image segmentation process based on MRF (Markov random field) model is studied, and a practical method of estimating model parameters is proposed. Through analyzing the impact of chosen model parameters, a sonar imagery segmentation algorithm based on fixed parameters’ MRF model is proposed. Both of the segmentation effect and the low computing load are gained. By applying the algorithm to the synthesized texture image and actual side-scan sonar image, the algorithm can be achieved with precise segmentation result.展开更多
It has remained a hard nut for years to segment sonar images of jacket installation environment,most of which are noisy images with inevitable blur after noise reduction.For the purpose of solutions to this problem,a ...It has remained a hard nut for years to segment sonar images of jacket installation environment,most of which are noisy images with inevitable blur after noise reduction.For the purpose of solutions to this problem,a fast segmen-tation algorithm is proposed on the basis of the gray value characteristics of sonar images.This algorithm is endowed with the advantage in no need of segmentation thresholds.To realize this goal,we follow the undermentioned steps:first,calcu-late the gray matrix of the fuzzy image background.After adjusting the gray value,the image is divided into three regions:background region,buffer region and target regions.Afterfiltering,we reset the pixels with gray value lower than 255 to binarize images and eliminate most artifacts.Finally,the remaining noise is removed by morphological processing.The simulation results of several sonar images show that the algorithm can segment the fuzzy sonar images quickly and effectively.Thus,the stable and feasible method is testified.展开更多
Cancer is one of the leading causes of death in the world,with radiotherapy as one of the treatment options.Radiotherapy planning starts with delineating the affected area from healthy organs,called organs at risk(OAR...Cancer is one of the leading causes of death in the world,with radiotherapy as one of the treatment options.Radiotherapy planning starts with delineating the affected area from healthy organs,called organs at risk(OAR).A new approach to automatic OAR seg-mentation in the chest cavity in Computed Tomography(CT)images is presented.The proposed approach is based on the modified U‐Net architecture with the ResNet‐34 encoder,which is the baseline adopted in this work.The new two‐branch CS‐SA U‐Net architecture is proposed,which consists of two parallel U‐Net models in which self‐attention blocks with cosine similarity as query‐key similarity function(CS‐SA)blocks are inserted between the encoder and decoder,which enabled the use of con-sistency regularisation.The proposed solution demonstrates state‐of‐the‐art performance for the problem of OAR segmentation in CT images on the publicly available SegTHOR benchmark dataset in terms of a Dice coefficient(oesophagus-0.8714,heart-0.9516,trachea-0.9286,aorta-0.9510)and Hausdorff distance(oesophagus-0.2541,heart-0.1514,trachea-0.1722,aorta-0.1114)and significantly outperforms the baseline.The current approach is demonstrated to be viable for improving the quality of OAR segmentation for radiotherapy planning.展开更多
基金2022 Scientific Research Project of Anhui Higher Education Institutions(Natural Science),“Construction and Application of Multimodal Medical Tumor Image Segmentation Model Based on Improved U-Net Model”(Project No.2022AH051889).
文摘Accurate segmentation of tumor images is a key core technology for the diagnosis and treatment of tumor diseases.In this paper,we analyze a variety of novel and targeted algorithms to solve these problems,summarize,and elaborate the method based on multimodal tumor image processing given the characteristics of serious grayscale inhomogeneity,texture instability,and diversity complexity of tumor images.
基金Supported by the National Basic Research Program of China(2011CB707904)the Natural Science Foundation of China(61472289)Hubei Province Natural Science Foundation of China(2015CFB254)
文摘Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-aided therapy, has been widely used in the treatment of uterine fibroids. However, such segmentation in HIFU remains challenge for two reasons: (1) the blurry or missing boundaries of lesion regions in the HIFU images and (2) the deformation of uterine fibroids caused by the patient's breathing or an external force during the US imaging process, which can lead to complex shapes of lesion regions. These factors have prevented classical active contour-based segmentation methods from yielding desired results for uterine fibroids in US images. In this paper, a novel active contour-based segmentation method is proposed, which utilizes the correlation information of target shapes among a sequence of images as prior knowledge to aid the existing active contour method. This prior knowledge can be interpreted as a unsupervised clustering of shapes prior modeling. Meanwhile, it is also proved that the shapes correlation has the low-rank property in a linear space, and the theory of matrix recovery is used as an effective tool to impose the proposed prior on an existing active contour model. Finally, an accurate method is developed to solve the proposed model by using the Augmented Lagrange Multiplier (ALM). Experimental results from both synthetic and clinical uterine fibroids US image sequences demonstrate that the proposed method can consistently improve the performance of active contour models and increase the robustness against missing or misleading boundaries, and can greatly improve the efficiency of HIFU therapy.
基金supported by the National Key Technologies R & D Program of China (No.2009BAB48B02)the National High-Tech Research and Development Program of China (Nos.2010AA060278600 and 2008AA062101)
文摘Lots of noises and heterogeneous objects with various sizes coexist in a complex image,such as an ore image;the classical image thresholding method cannot effectively distinguish between ores.To segment ore objects with various sizes simultaneously,two adaptive windows in the image were chosen for each pixel;the gray value of windows was calculated by Otsu's threshold method.To extract the object skeleton,the definition principle of distance transformation templates was proposed.The ores linked together in a binary image were separated by distance transformation and gray reconstruction.The seed region of each object was picked up from the local maximum gray region of the reconstruction image.Starting from these seed regions,the watershed method was used to segment ore object effectively.The proposed algorithm marks and segments most objects from complex images precisely.
文摘In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm.
基金supported by the Fundamental Research Funds for the Central Universities of China (Grant No.2013SCU11006)the Key Laboratory of Digital Mapping and Land Information Application of National Administration of Surveying,Mapping and Geoinformation of China (Grant No.DM2014SC02)the Key Laboratory of Geospecial Information Technology,Ministry of Land and Resources of China (Grant No.KLGSIT201504)
文摘Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we propose an improved Mean Shift Algorithm in consideration of the characteristics of these images. First, images were classified into several homogeneous color regions and texture regions by conducting variance detection on the color space. Next, each homogeneous color region was directly segmented to generate the preliminary results by applying the Mean Shift Algorithm. For each texture region, we conduct a high-dimensional feature space by extracting information such as color, texture and shape comprehensively, and work out a proper bandwidth according to the normalized distribution density. Then the bandwidth variable Mean Shift Algorithm was applied to obtain segmentation results by conducting the pattern classification in feature space. Last, the final results were obtained by merging these regions by means of the constructed cost functions and removing the oversegmented regions from the merged regions. It has been experimentally segmented on the high spatial resolution remote sensing images collected by Quickbird and Unmanned Aerial Vehicle(UAV). We put forward an approach to evaluate the segmentation results by using the segmentation matching index(SMI). This takes into consideration both the area and the spectrum. The experimental results suggest that the improved Mean Shift Algorithm outperforms the conventional one in terms of accuracy of segmentation.
基金the National Natural Science Foundation of China(Grants No 61702274)the Natural Science Foundation of Jiangsu Province(Grants No BK20170958).
文摘Magnetic resonance imaging(MRI)has been a prevalence technique for breast cancer diagnosis.Computer-aided detection and segmentation of lesions from MRIs plays a vital role for the MRI-based disease analysis.There are two main issues of the existing breast lesion segmentation techniques:requir ing manual delineation of Regions of Interests(ROIs)as a step of initialization;and requiring a large amount of labeled images for model construction or parameter lear ning,while in real clinical or experimental settings,it is highly challenging to get suficient labeled MRIs.To resolve these issues,this work proposes a semi-supervised method for breast tumor segmentation based on super voxel strategies.After image segmentation with advanced cluster techniques,we take a supervised learning step to classify the tumor and nontumor patches in order to automatically locate the tumor regions in an MRI To obtain the opt imal performance of tumor extraction,we take extensive experiments to learn par ameters for tumor segmentation and dassification,and design 225 classifiers corresponding to diferent parameter settings.We call the proposed method as Semi supervised Tumor Segmentation(SSTS),and apply it to both mass and nonmass lesions.Experimental results show better performance of SsTS compared with five state of-the art methods.
基金supported by the National Natural Science Foundation of China(4117132741301361)+2 种基金the National Key Basic Research Program of China(973 Program)(2012CB719903)the Science and Technology Project of Ministry of Transport of People’s Republic of China(2012-364-X11-803)the Shanghai Municipal Natural Science Foundation(12ZR1433200)
文摘Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.
基金We deeply acknowledge Taif University for supporting this study through Taif University Researchers Supporting Project number(TURSP-2020/115),Taif University,Taif,Saudi Arabia.
文摘Leukaemia is a type of blood cancer that is caused by undeveloped White Blood Cells(WBC),and it is also called a blast blood cell.In the marrow of human bones,leukaemia is developed and is responsible for blood cell generation with leukocytes and WBC,and if any cell gets blasted,then it may become a cause of death.Therefore,the diagnosis of leukaemia in its early stages helps greatly in the treatment along with saving human lives.Subsequently,in terms of detection,image segmentation techniques play a vital role,and they turn out to be the important image processing steps for the extraction of feature patterns from the Acute Lymphoblastic Leukaemia(ALL)type of blood cancer.Moreover,the image segmentation technique focuses on the division of cells by segmenting a microscopic image into background and cancer blood cell nucleus,which is well-known as the Region Of Interest(ROI).As a result,in this article,we attempt to build a segmentation technique capable of solving blood cell nucleus segmentation issues using four distinct scenarios,including K-means,FCM(Fuzzy Cmeans),K-means with FFA(Firefly Algorithm),and FCM with FFA.Also,we determine the most effective method of blood cell nucleus segmentation,which we subsequently use for the Leukaemia classification model.Finally,using the Convolution Neural Network(CNN)as a classifier,we developed a leukaemia cancer classification model from the microscopic images.The proposed system’s classification accuracy is tested using the CNN to test the model on the ALL-IDB dataset and equate it to the current state of the art.In terms of experimental analysis,we observed that the accuracy of the model is near to 99%,and it is far better than other existing models that are designed to segment and classify the types of leukaemia cancer in terms of ALL.
基金supported in part by the Natural Science Foundation of Zhejiang Province(LZ22F020005,LTGS23E070001)National Natural Science Foundation of China(62076185,U1809209).
文摘Lupus Nephritis(LN)is a significant risk factor for morbidity and mortality in systemic lupus erythematosus,and nephropathology is still the gold standard for diagnosing LN.To assist pathologists in evaluating histopathological images of LN,a 2D Rényi entropy multi-threshold image segmentation method is proposed in this research to apply to LN images.This method is based on an improved Cuckoo Search(CS)algorithm that introduces a Diffusion Mechanism(DM)and an Adaptiveβ-Hill Climbing(AβHC)strategy called the DMCS algorithm.The DMCS algorithm is tested on 30 benchmark functions of the IEEE CEC2017 dataset.In addition,the DMCS-based multi-threshold image segmentation method is also used to segment renal pathological images.Experimental results show that adding these two strategies improves the DMCS algorithm's ability to find the optimal solution.According to the three image quality evaluation metrics:PSNR,FSIM,and SSIM,the proposed image segmentation method performs well in image segmentation experiments.Our research shows that the DMCS algorithm is a helpful image segmentation method for renal pathological images.
基金Under the auspices of National Natural Science Foundation of China (No. 30370267)Key Project of Jilin Provincial Science & Technology Department (No. 20075014)
文摘Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich texture details of remote sensing images. We proposed a new segmentation method based on Adaptive Genetic Algorithm(AGA) and Alternative Fuzzy C-Means(AFCM) . Segmentation thresholds were identified by AGA. Then the image was segmented by AFCM. The results indicate that the precision and the speed of segmentation have been greatly increased,and the accuracy of threshold selection is much higher compared with traditional Otsu and Fuzzy C-Means(FCM) segmentation methods. The segmentation results also show that multi-thresholds segmentation has been achieved by combining AGA with AFCM.
文摘This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin(H&E)stained histopathology images.The purpose of this study is to overcome the challenges faced in automated nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining protocols,as well as the segmentation of variable-sized and overlapping nuclei.To this extent,the approach proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks(CNN)architectures as encoder backbones,along with stain normalization and test time augmentation,to improve segmentation accuracy.Additionally,this paper employs a Structure-Preserving Color Normalization(SPCN)technique as a preprocessing step for stain normalization.The proposed model was trained and tested on both single-organ and multi-organ datasets,yielding an F1 score of 84.11%,mean Intersection over Union(IoU)of 81.67%,dice score of 84.11%,accuracy of 92.58%and precision of 83.78%on the multi-organ dataset,and an F1 score of 87.04%,mean IoU of 86.66%,dice score of 87.04%,accuracy of 96.69%and precision of 87.57%on the single-organ dataset.These findings demonstrate that the proposed model ensemble coupled with the right pre-processing and post-processing techniques enhances nuclei segmentation capabilities.
文摘A leukocyte segmentation method based on S component and B component images is proposed.Threshold segmentation operation is applied to get two binary images in S component and B component images.The samples used in this study are peripheral blood smears.It is easy tofind from the two binary images that gray values are the same at every corresponding pixels in theleukocyte cytoplasm region,but opposite in the other regions.The feature shows that "IMAGEAND"operation can be employed on the two binary images to segment the cytoplasm region ofleukocyte.By doing"IMAGE XOR"operation between cytoplasn region and nucleus region,theleukocyte segment ation can be retrieved effectively.The segmentation accuracy is evaluated by comparing the segmentation result of the proposed method with the manual segmentation by ahematologist.Experiment results show that the proposed method is of a higher segmentationaccuracy and it also performs well when leukocytes overlap_with erythrocytes.The averagesegmentation accuracy of the proposed method reaches 97.7%for segmenting five types ofleukocyte.Good segmentation results provide an important foundation for leukocytes aut omaticrecognition.
基金This project is supported by National Natural Science Foundation of China (No.50275120, No.50535030)Great Science and Technology Project of Xi'an City, China(No.CX200206)
文摘Aiming at the problem that the existence of disturbances on the edges of light-stripe makes the segmentation of the light-stripes images difficult, a new segmentation algorithm based on edge-searching is presented. It firstly calculates every edge pixel's horizontal coordinate grads to produce the corresponding grads-edge, then uses a designed length-variable l D template to scan the light-stripes' grads-edges. The template is able to find the disturbances with different width utilizing the distributing character of the edge disturbances. The found disturbances are eliminated finally. The algorithm not only can smoothly segment the light-stripes images, but also eliminate most disturbances on the light-stripes' edges without damaging the light-stripes images' 3D information. A practical example of using the proposed algorithm is given in the end. It is proved that the efficiency of the algorithm has been improved obviously by comparison.
基金supported by the National Natural Science Foundation of China(Grant Nos.81871508 and 61773246)the Major Program of Shandong Province Natural Science Foundation(Grant No.ZR2019ZD04 and ZR2018ZB0419)the Taishan Scholar Program of Shandong Province of China(Grant No.TSHW201502038).
文摘Multispectral imaging (MSI) technique is often used to capture imagesof the fundus by illuminating it with different wavelengths of light. However,these images are taken at different points in time such that eyeball movementscan cause misalignment between consecutive images. The multispectral imagesequence reveals important information in the form of retinal and choroidal bloodvessel maps, which can help ophthalmologists to analyze the morphology of theseblood vessels in detail. This in turn can lead to a high diagnostic accuracy of several diseases. In this paper, we propose a novel semi-supervised end-to-end deeplearning framework called “Adversarial Segmentation and Registration Nets”(ASRNet) for the simultaneous estimation of the blood vessel segmentation andthe registration of multispectral images via an adversarial learning process. ASRNet consists of two subnetworks: (i) A segmentation module S that fulfills theblood vessel segmentation task, and (ii) A registration module R that estimatesthe spatial correspondence of an image pair. Based on the segmention-drivenregistration network, we train the segmentation network using a semi-supervisedadversarial learning strategy. Our experimental results show that the proposedASRNet can achieve state-of-the-art accuracy in segmentation and registrationtasks performed with real MSI datasets.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0107000)the General Projects of the National Natural Science Foundation of China(Grant No.52171259)the High-Tech Ship Research Project of the Ministry of Industry and Information Technology(Grant No.[2021]342)。
文摘Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.
基金This work is supported by Projects of International Cooperation and Exchanges,National Natural Science Foundation of China(NSFC)(Grant No.:30911120497)the National 973 project Grant No.:2011CB933103.
文摘Stroke and heart attack,which could be led by a kind of cerebrovascular and cardiovascular disease named as atherosclerosis,would seriously cause human morbidity and mortality.It is important for the early stage diagnosis and monitoring medical intervention of the atherosclerosis.Carotid stenosis is a classical atherosclerotic lesion with vessel wall narrowing down and accumulating plaques burden.The carotid artery of intima-media thickness(IMT)is a key indicator to the disease.With the development of computer assisted diagnosis technology,the imaging techniques,segmentation algorithms,measurement methods,and evaluation tools have made considerable progress.Ultrasound imaging,being real-time,economic,reliable,and safe,now seems to become a standard in vascular assessment methodology especially for the measurement of IMT.This review firstly attempts to discuss the clinical relevance of measurements in clinical practice at first,and then followed by the challenges that one has to face when approaching the segmentation of ultrasound images.Secondly,the commonly used methods for the IMT segmentation and measurement are presented.Thirdly,discussion and evaluation of different segmentation techniques are performed.An overview of summary and future perspectives is given finally.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2020R1F1A1074885)was supported by the Brain Korea 21 Project in 2021(No.4199990114242).
文摘Objective and quantitative assessment of skin conditions is essential for cosmeceutical studies and research on skin aging and skin regeneration.Various handcraft-based image processing methods have been proposed to evaluate skin conditions objectively,but they have unavoidable disadvantages when used to analyze skin features accurately.This study proposes a hybrid segmentation scheme consisting of Deeplab v3+with an Inception-ResNet-v2 backbone,LightGBM,and morphological processing(MP)to overcome the shortcomings of handcraft-based approaches.First,we apply Deeplab v3+with an Inception-ResNet-v2 backbone for pixel segmentation of skin wrinkles and cells.Then,LightGBM and MP are used to enhance the pixel segmentation quality.Finally,we determine several skin features based on the results of wrinkle and cell segmentation.Our proposed segmentation scheme achieved a mean accuracy of 0.854,mean of intersection over union of 0.749,and mean boundary F1 score of 0.852,which achieved 1.1%,6.7%,and 14.8%improvement over the panoptic-based semantic segmentation method,respectively.
基金Supported by China Postdoctoral Science Foundation (Grant No. LRB00025), Research Fund for Doctoral Program of Higher Education of China (Grant No. 20050217010) and Foundation under the Underwater Acoustic Technology National Key Lab (Grant No. 9140C200501060C20).
文摘The effective method of the recognition of underwater complex objects in sonar image is to segment sonar image into target, shadow and sea-bottom reverberation regions and then extract the edge of the object. Because of the time-varying and space-varying characters of underwater acoustics environment, the sonar images have poor quality and serious speckle noise, so traditional image segmentation is unable to achieve precise segmentation. In the paper, the image segmentation process based on MRF (Markov random field) model is studied, and a practical method of estimating model parameters is proposed. Through analyzing the impact of chosen model parameters, a sonar imagery segmentation algorithm based on fixed parameters’ MRF model is proposed. Both of the segmentation effect and the low computing load are gained. By applying the algorithm to the synthesized texture image and actual side-scan sonar image, the algorithm can be achieved with precise segmentation result.
基金supported by Open Fund Project of China Key Laboratory of Submarine Geoscience(KLSG1802)Science&Technology Project of China Ocean Mineral Resources Research and Development Association(DY135-N1-1-05)Science&Technology Project of Zhoushan city of Zhejiang Province(2019C42271,2019C33205).
文摘It has remained a hard nut for years to segment sonar images of jacket installation environment,most of which are noisy images with inevitable blur after noise reduction.For the purpose of solutions to this problem,a fast segmen-tation algorithm is proposed on the basis of the gray value characteristics of sonar images.This algorithm is endowed with the advantage in no need of segmentation thresholds.To realize this goal,we follow the undermentioned steps:first,calcu-late the gray matrix of the fuzzy image background.After adjusting the gray value,the image is divided into three regions:background region,buffer region and target regions.Afterfiltering,we reset the pixels with gray value lower than 255 to binarize images and eliminate most artifacts.Finally,the remaining noise is removed by morphological processing.The simulation results of several sonar images show that the algorithm can segment the fuzzy sonar images quickly and effectively.Thus,the stable and feasible method is testified.
基金the PID2022‐137451OB‐I00 and PID2022‐137629OA‐I00 projects funded by the MICIU/AEIAEI/10.13039/501100011033 and by ERDF/EU.
文摘Cancer is one of the leading causes of death in the world,with radiotherapy as one of the treatment options.Radiotherapy planning starts with delineating the affected area from healthy organs,called organs at risk(OAR).A new approach to automatic OAR seg-mentation in the chest cavity in Computed Tomography(CT)images is presented.The proposed approach is based on the modified U‐Net architecture with the ResNet‐34 encoder,which is the baseline adopted in this work.The new two‐branch CS‐SA U‐Net architecture is proposed,which consists of two parallel U‐Net models in which self‐attention blocks with cosine similarity as query‐key similarity function(CS‐SA)blocks are inserted between the encoder and decoder,which enabled the use of con-sistency regularisation.The proposed solution demonstrates state‐of‐the‐art performance for the problem of OAR segmentation in CT images on the publicly available SegTHOR benchmark dataset in terms of a Dice coefficient(oesophagus-0.8714,heart-0.9516,trachea-0.9286,aorta-0.9510)and Hausdorff distance(oesophagus-0.2541,heart-0.1514,trachea-0.1722,aorta-0.1114)and significantly outperforms the baseline.The current approach is demonstrated to be viable for improving the quality of OAR segmentation for radiotherapy planning.