BACKGROUND Neurovascular compression(NVC) is the main cause of primary trigeminal neuralgia(TN) and hemifacial spasm(HFS). Microvascular decompression(MVD) is an effective surgical method for the treatment of TN and H...BACKGROUND Neurovascular compression(NVC) is the main cause of primary trigeminal neuralgia(TN) and hemifacial spasm(HFS). Microvascular decompression(MVD) is an effective surgical method for the treatment of TN and HFS caused by NVC. The judgement of NVC is a critical step in the preoperative evaluation of MVD, which is related to the effect of MVD treatment. Magnetic resonance imaging(MRI) technology has been used to detect NVC prior to MVD for several years. Among many MRI sequences, three-dimensional time-of-flight magnetic resonance angiography(3D TOF MRA) is the most widely used. However, 3D TOF MRA has some shortcomings in detecting NVC. Therefore, 3D TOF MRA combined with high resolution T2-weighted imaging(HR T2WI) is considered to be a more effective method to detect NVC.AIM To determine the value of 3D TOF MRA combined with HR T2WI in the judgment of NVC, and thus to assess its value in the preoperative evaluation of MVD.METHODS Related studies published from inception to September 2022 based on PubMed, Embase, Web of Science, and the Cochrane Library were retrieved. Studies that investigated 3D TOF MRA combined with HR T2WI to judge NVC in patients with TN or HFS were included according to the inclusion criteria. Studies without complete data or not relevant to the research topics were excluded. The Quality Assessment of Diagnostic Accuracy Studies checklist was used to assess the quality of included studies. The publication bias of the included literature was examined by Deeks’ test. An exact binomial rendition of the bivariate mixed-effects regression model was used to synthesize data. Data analysis was performed using the MIDAS module of statistical software Stata 16.0. Two independent investigators extracted patient and study characteristics, and discrepancies were resolved by consensus. Individual and pooled sensitivities and specificities were calculated. The I_(2) statistic and Q test were used to test heterogeneity. The study was registered on the website of PROSERO(registration No. CRD42022357158).RESULTS Our search identified 595 articles, of which 12(including 855 patients) fulfilled the inclusion criteria. Bivariate analysis showed that the pooled sensitivity and specificity of 3D TOF MRA combined with HR T2WI for detecting NVC were 0.96 [95% confidence interval(CI): 0.92-0.98] and 0.92(95%CI: 0.74-0.98), respectively. The pooled positive likelihood ratio was 12.4(95%CI: 3.2-47.8), pooled negative likelihood ratio was 0.04(95%CI: 0.02-0.09), and pooled diagnostic odds ratio was 283(95%CI: 50-1620). The area under the receiver operating characteristic curve was 0.98(95%CI: 0.97-0.99). The studies showed no substantial heterogeneity(I2 = 0, Q = 0.001 P = 0.50).CONCLUSION Our results suggest that 3D TOF MRA combined with HR T2WI has excellent sensitivity and specificity for judging NVC in patients with TN or HFS. This method can be used as an effective tool for preoperative evaluation of MVD.展开更多
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp...Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.展开更多
As an ill-posed problem, multiframe blind super resolution imaging recovers a high resolution image from a group of low resolution images with some degradations when the information of blur kernel is limited. Note tha...As an ill-posed problem, multiframe blind super resolution imaging recovers a high resolution image from a group of low resolution images with some degradations when the information of blur kernel is limited. Note that the quality of the recovered image is influenced more by the accuracy of blur estimation than an advanced regularization. We study the traditional model of the multiframe super resolution and modify it for blind deblurring. Based on the analysis, we proposed two algorithms. The first one is based on the total variation blind deconvolution algorithm and formulated as a functional for optimization with the regularization of blur. Based on the alternating minimization and the gradient descent algorithm, the high resolution image and the unknown blur kernel are estimated iteratively. By using the median shift and add operator, the second algorithm is more robust to the outlier influence. The MSAA initialization simplifies the interpolation process to reconstruct the blurred high resolution image for blind deblurring and improves the accuracy of blind super resolution imaging. The experimental results demonstrate the superiority and accuracy of our novel algorithms.展开更多
Due to hardware limitations,existing hyperspectral(HS)camera often suffer from low spatial/temporal resolution.Recently,it has been prevalent to super-resolve a low reso-lution(LR)HS image into a high resolution(HR)HS...Due to hardware limitations,existing hyperspectral(HS)camera often suffer from low spatial/temporal resolution.Recently,it has been prevalent to super-resolve a low reso-lution(LR)HS image into a high resolution(HR)HS image with a HR RGB(or mul-tispectral)image guidance.Previous approaches for this guided super-resolution task often model the intrinsic characteristic of the desired HR HS image using hand-crafted priors.Recently,researchers pay more attention to deep learning methods with direct supervised or unsupervised learning,which exploit deep prior only from training dataset or testing data.In this article,an efficient convolutional neural network-based method is presented to progressively super-resolve HS image with RGB image guidance.Specif-ically,a progressive HS image super-resolution network is proposed,which progressively super-resolve the LR HS image with pixel shuffled HR RGB image guidance.Then,the super-resolution network is progressively trained with supervised pre-training and un-supervised adaption,where supervised pre-training learns the general prior on training data and unsupervised adaptation generalises the general prior to specific prior for variant testing scenes.The proposed method can effectively exploit prior from training dataset and testing HS and RGB images with spectral-spatial constraint.It has a good general-isation capability,especially for blind HS image super-resolution.Comprehensive experimental results show that the proposed deep progressive learning method out-performs the existing state-of-the-art methods for HS image super-resolution in non-blind and blind cases.展开更多
We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact ...We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact of the diffraction limit of the underlying imaging system on the optimal SIM grating frequency that can be used to obtain the highest SR enhancement with non-continuous spatial frequency support. Besides confirming the previous theoretical and experimental work that SR-SIM can achieve an enhancement close to 3 times the diffraction limit with grating pattern illuminations, we also observe and report a series of more subtle effects of SR-SIM with non-continuous spatial frequency support. Our simulations show that when the SIM grating frequency exceeds twice that of the diffraction limit, the higher SIM grating frequency can help achieve a higher SR enhancement for the underlying imaging systems whose diffraction limit is low, though this enhancement is obtained at the cost of losing resolution at some lower resolution targets. Our simulations also show that, for underlying imaging systems with high diffraction limits, however, SR-SIM grating frequencies above twice the diffraction limits tend to bring no significant extra enhancement. Furthermore, we observed that there exists a limit grating frequency above which the SR enhancement effect is lost, and the reconstructed images essentially have the same resolution as the one obtained directly from the underlying imaging system without using the SIM process.展开更多
A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, s...A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, some engineering examples are selected to analyze the turbulence influences on image resolution based on three different atmospheric turbulence models quantificationally, for the airborne remote sensing system, the resolution errors caused by the atmospheric turbulence are less than 1 cm, and for the space-borne remote sensing system, the errors are around 1 cm. The results are similar to that obtained by the previous Friedmethod. Compared with the Fried-method, the arrival angle-method is rather simple and can be easily used in engineering fields.展开更多
Road extraction plays an important role in many applications such as car navigation, but the manual extraction of roads is a laborious, tedious task. To speed the extraction of roads, an approach based on particle fil...Road extraction plays an important role in many applications such as car navigation, but the manual extraction of roads is a laborious, tedious task. To speed the extraction of roads, an approach based on particle filtering to extract automatically roads from high resolution imagery is proposed. Particle filtering provides a statistical framework for propagating sample-based approximations of posterior distributions and has almost no restriction on the ingredients of the model. We integrate the similarity of grey value and the edge point distribution of roads into particle filtering to deal with complex scenes. To handle road appearance changes the tracking algorithm is allowed to update the road model during temporally stable image observations. A fully automatic initialization strategy is used. Experimental results show that the proposed approach is a promising and fully automatic method for extracting roads from images, even in the presence of occlusions.展开更多
The dispersoid phase Al_(20)Cu_2Mn_3 in a 2024 Al alloy is commonly composed of twins,An ob- servation of corresponding high resolution image shows that the twin boundary plane is a glide plane other than mirror one.T...The dispersoid phase Al_(20)Cu_2Mn_3 in a 2024 Al alloy is commonly composed of twins,An ob- servation of corresponding high resolution image shows that the twin boundary plane is a glide plane other than mirror one.Two neighbouring components of twins are not symmetry of re- flection or rotation,but of glide reflection.The“diamond”glide plane is(101)and the glide vector is(1/4)(-).Components of twins in the phase take shape of prism with the longitudinal edge being parallel to[010]and side faces being{101}and{100}.展开更多
Based on the measurement model of inverse synthetic aperture radar (ISAR) within a small aspect sector,an imaging method was presented with the application of sparse signal processing.This method can form higher resol...Based on the measurement model of inverse synthetic aperture radar (ISAR) within a small aspect sector,an imaging method was presented with the application of sparse signal processing.This method can form higher resolution inverse synthetic aperture radar images from compensating incomplete measured data,and improves the clarity of the images and makes the feature structure much more clear,which is helpful for target recognition.The simulation results indicate that this method can provide clear ISAR images with high contrast under complex motion case.展开更多
The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resoluti...The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.展开更多
Accurate information on the location and magnitude of vegetation change in scenic areas can guide the configuration of tourism facilities and the formulation of vegetation protection measures.High spatial resolution r...Accurate information on the location and magnitude of vegetation change in scenic areas can guide the configuration of tourism facilities and the formulation of vegetation protection measures.High spatial resolution remote sensing images can be used to detect subtle vegetation changes.The major objective of this study was to map and quantify forest vegetation changes in a national scenic location,the Purple Mountains of Nanjing,China,using multi-temporal cross-sensor high spatial resolution satellite images to identify the main drivers of the vegetation changes and provide a reference for sustainable management.We used Quickbird images acquired in 2004,IKONOS images acquired in 2009,and WorldView2 images acquired in 2015.Four pixel-based direct change detection methods including the normalized difference vegetation index difference method,multi-index integrated change analysis(MIICA),principal component analysis,and spectral gradient difference analysis were compared in terms of their change detection performances.Subsequently,the best pixel-based detection method in conjunction with object-oriented image analysis was used to extract subtle forest vegetation changes.An accuracy assessment using the stratified random sampling points was conducted to evaluate the performance of the change detection results.The results showed that the MIICA method was the best pixel-based change detection method.And the object-oriented MIICA with an overall accuracy of 0.907 and a kappa coefficient of 0.846 was superior to the pixel-based MIICA.From 2004 to 2009,areas of vegetation gain mainly occurred around the periphery of the study area,while areas of vegetation loss were observed in the interior and along the boundary of the study area due to construction activities,which contributed to 79%of the total area of vegetation loss.During 2009–2015,the greening initiatives around the construction areas increased the forest vegetation coverage,accounting for 84%of the total area of vegetation gain.In spite of this,vegetation loss occurred in the interior of the Purple Mountains due to infrastructure development that caused conversion from vegetation to impervious areas.We recommend that:(1)a local multi-agency team inspect and assess law enforcement regarding natural resource utilization;and(2)strengthen environmental awareness education.展开更多
[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spat...[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.展开更多
Obtaining clear images of underwater scenes with descriptive details is an arduous task.Conventional imaging techniques fail to provide clear cut features and attributes that ultimately result in object recognition er...Obtaining clear images of underwater scenes with descriptive details is an arduous task.Conventional imaging techniques fail to provide clear cut features and attributes that ultimately result in object recognition errors.Consequently,a need for a system that produces clear images for underwater image study has been necessitated.To overcome problems in resolution and to make better use of the Super-Resolution(SR)method,this paper introduces a novel method that has been derived from the Alpha Generative Adversarial Network(AlphaGAN)model,named Alpha Super Resolution Generative Adversarial Network(AlphaSRGAN).The model put forth in this paper helps in enhancing the quality of underwater imagery and yields images with greater resolution and more concise details.Images undergo pre-processing before they are fed into a generator network that optimizes and reforms the structure of the network while enhancing the stability of the network that acts as the generator.After the images are processed by the generator network,they are passed through an adversarial method for training models.The dataset used in this paper to learn Single Image Super Resolution(SISR)is the USR 248 dataset.Training supervision is performed by an unprejudiced function that simultaneously scrutinizes and improves the image quality.Appraisal of images is done with reference to factors like local style information,global content and color.The dataset USR 248 which has a huge collection of images has been used for the study is composed of three collections of images—high(640×480)and low(80×60,160×120,and 320×240).Paired instances of different sizes—2×,4×and 8×—are also present in the dataset.Parameters like Mean Opinion Score(MOS),Peak Signal-to-Noise Ratio(PSNR),Structural Similarity(SSIM)and Underwater Image Quality Measure(UIQM)scores have been compared to validate the improved efficiency of our model when compared to existing works.展开更多
Research interest in multi-frame Superresolution has risen substantially in recent years. This paper presents a modified Projection Onto Convex Set (POCS) superresolution method based on wavelet transform. The metho...Research interest in multi-frame Superresolution has risen substantially in recent years. This paper presents a modified Projection Onto Convex Set (POCS) superresolution method based on wavelet transform. The method analyzes the image formation model from wavelet multiresolution analysis point of view and defines an closed convex set and its corresponding projection based on wavelet transform. An iterative procedure is utilized to reduce the estimated errors of the result image, and this guarantees the estimated image to lay in the intersection of different convex sets, thus produces a high resolution image with a reduced error. The effectiveness of the algorithm is demonstrated bv experimental results.展开更多
This research paper recommends the point spread function(PSF)forecasting technique based on the projection onto convex set(POCS)and regularization to acquire low resolution images.As the environment for the production...This research paper recommends the point spread function(PSF)forecasting technique based on the projection onto convex set(POCS)and regularization to acquire low resolution images.As the environment for the production of user created contents(UCC)videos(one of the contents on the Internet)becomes widespread,resolution reduction and image distortion occurs,failing to satisfy users who desire high quality images.Accordingly,this research neutralizes the coding artifact through POCS and regularization processes by:1)factoring the local characteristics of the image when it comes to the noise that results during the discrete cosine transform(DCT)and quantization process;and 2)removing the blocking and ring phenomena which are problems with the existing video compression.Moreover,this research forecasts the point spread function to obtain low resolution images using the above-mentioned methods.Thus,a method is suggested for minimizing the errors found among the forecasting interpolation pixels.Low-resolution image quality obtained through the experiment demonstrates that significant enhancement was made on the visual level compared to the original image.展开更多
Calman filtering method based on wavelet transform has been successfully applied to signal denoising. According to the different application methods and the realization forms of Calman filter, combined with the struct...Calman filtering method based on wavelet transform has been successfully applied to signal denoising. According to the different application methods and the realization forms of Calman filter, combined with the structural analysis of wavelet decomposition, we present kinds of multi-scale filtering methods into the category of the three. The simulation results show that the multi-scale Calman filtering method based on system layer has better performance. Synthetic aperture radar (SAR) images have rich texture information, which can reflect the spatial structure of objects. The texture feature is widely used in SAR image classification and SAR image segmentation. Affected by imaging factors, the direct use of texture features extracted from SAR images is not good enough. In order to avoid the traditional method of filtering followed the texture feature extraction caused by the loss of texture and edge information, this paper presents a texture feature extraction of SAR image, then using Robust PCA method, finally using texture feature clustering method K-means test after treatment with RPCA expression.展开更多
Global motion estimation (GME) algorithms are widely applied to computer vision and video processing. In the previous works, the image resolutions are usually low for the real-time requirement (e.g. video stabilizatio...Global motion estimation (GME) algorithms are widely applied to computer vision and video processing. In the previous works, the image resolutions are usually low for the real-time requirement (e.g. video stabilization). However, in some mobile devices applications (e.g. image sequence panoramic stitching), the high resolution is necessary to obtain satisfactory quality of panoramic image. However, the computational cost will become too expensive to be suitable for the low power consumption requirement of mobile device. The full search algorithm can obtain the global minimum with extremely computational cost, while the typical fast algorithms may suffer from the local minimum problem. This paper proposed a fast algorithm to deal with 2560 × 1920 high-resolution (HR) image sequences. The proposed method estimates the motion vector by a two-level coarse-to-fine scheme which only exploits sparse reference blocks (25 blocks in this paper) in each level to determine the global motion vector, thus the computational costs are significantly decreased. In order to increase the effective search range and robustness, the predictive motion vector (PMV) technique is used in this work. By the comparisons of computational complexity, the proposed algorithm costs less addition operations than the typical Three-Step Search algorithm (TSS) for estimating the global motion of the HR images without the local minimum problem. The quantitative evaluations show that our method is comparable to the full search algorithm (FSA) which is considered to be the golden baseline.展开更多
To ensure project safety and secure public support, an integrated and comprehensive monitoring program is needed within a carbon capture and storage(CCS) project. Monitoring can be done using many well-established tec...To ensure project safety and secure public support, an integrated and comprehensive monitoring program is needed within a carbon capture and storage(CCS) project. Monitoring can be done using many well-established techniques from various fields, and the seismic method proves to be the crucial one. This method is widely used to determine the CO_(2) distribution, image the plume development, and quantitatively estimate the concentration. Because both the CO_(2) distribution and the potential migration pathway can be spatially small scale, high resolution for seismic imaging is demanded. However, obtaining a high-resolution image of a subsurface structure in marine settings is difficult. Herein, we introduce the novel Hcable(Harrow-like cable system) technique, which may be applied to offshore CCS monitoring. This technique uses a highfrequency source(the dominant frequency>100 Hz) to generate seismic waves and a combination of a long cable and several short streamers to receive seismic waves. Ultrahigh-frequency seismic images are achieved through the processing of Hcable seismic data. Hcable is then applied in a case study to demonstrate its detailed characterization for small-scale structures. This work reveals that Hcable is a promising tool for timelapse seismic monitoring of oceanic CCS.展开更多
Double-and triple-cropping in a year have played a very important role in meeting the rising need for food in China.However,the intensified agricultural practices have significantly altered biogeochemical cycles and s...Double-and triple-cropping in a year have played a very important role in meeting the rising need for food in China.However,the intensified agricultural practices have significantly altered biogeochemical cycles and soil quality.Understanding and mapping cropping intensity in China′s agricultural systems are therefore necessary to better estimate carbon,nitrogen and water fluxes within agro-ecosystems on the national scale.In this study,we investigated the spatial pattern of crop calendar and multiple cropping rotations in China using phenological records from 394 agro-meteorological stations(AMSs)across China.The results from the analysis of in situ field observations were used to develop a new algorithm that identifies the spatial distribution of multiple cropping in China from moderate resolution imaging spectroradiometer(MODIS)time series data with a 500 m spatial resolution and an 8-day temporal resolution.According to the MODIS-derived multiple cropping distribution in 2002,the proportion of cropland cultivated with multiple crops reached 34%in China.Double-cropping accounted for approximately 94.6%and triple-cropping for 5.4%.The results demonstrat that MODIS EVI(Enhanced Vegetation Index)time series data have the capability and potential to delineate the dynamics of double-and triple-cropping practices.The resultant multiple cropping map could be used to evaluate the impacts of agricultural intensification on biogeochemical cycles.展开更多
The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry o...The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin.In this study,the arid remote sensing ecological index(ARSEI)for large-scale arid areas was developed,which coupled the information of the greenness index,the salinity index,the humidity index,the heat index,and the land degradation index of arid areas.The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019.The results show that the greenness index,the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin,while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment.The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement,followed by deterioration,and finally further improvement.The spatial variation of these changes was significant.From 2000 to 2019,grassland and wasteland(saline alkali land and sandy land)in the central and western parts of the basin had the worst ecological environment quality.The areas with poor ecological environment quality are mainly distributed in rivers,wetlands,and cultivated land around lakes.During the period from 2000 to 2019,except for the surrounding areas of the Aral Sea,the ecological environment quality in other areas of the Aral Sea Basin has been improved in general.The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were–0.593 and 0.524,respectively.Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin.However,human activities had a greater impact.The ARSEI can quantitatively and intuitively reflect the scale and causes of large-scale and long-time period changes of the eco-environmental quality in arid areas;it is very suitable for the study of the eco-environmental quality in arid areas.展开更多
基金Supported by the Key Research and Development Plan of Shaanxi Province,No.2021SF-298.
文摘BACKGROUND Neurovascular compression(NVC) is the main cause of primary trigeminal neuralgia(TN) and hemifacial spasm(HFS). Microvascular decompression(MVD) is an effective surgical method for the treatment of TN and HFS caused by NVC. The judgement of NVC is a critical step in the preoperative evaluation of MVD, which is related to the effect of MVD treatment. Magnetic resonance imaging(MRI) technology has been used to detect NVC prior to MVD for several years. Among many MRI sequences, three-dimensional time-of-flight magnetic resonance angiography(3D TOF MRA) is the most widely used. However, 3D TOF MRA has some shortcomings in detecting NVC. Therefore, 3D TOF MRA combined with high resolution T2-weighted imaging(HR T2WI) is considered to be a more effective method to detect NVC.AIM To determine the value of 3D TOF MRA combined with HR T2WI in the judgment of NVC, and thus to assess its value in the preoperative evaluation of MVD.METHODS Related studies published from inception to September 2022 based on PubMed, Embase, Web of Science, and the Cochrane Library were retrieved. Studies that investigated 3D TOF MRA combined with HR T2WI to judge NVC in patients with TN or HFS were included according to the inclusion criteria. Studies without complete data or not relevant to the research topics were excluded. The Quality Assessment of Diagnostic Accuracy Studies checklist was used to assess the quality of included studies. The publication bias of the included literature was examined by Deeks’ test. An exact binomial rendition of the bivariate mixed-effects regression model was used to synthesize data. Data analysis was performed using the MIDAS module of statistical software Stata 16.0. Two independent investigators extracted patient and study characteristics, and discrepancies were resolved by consensus. Individual and pooled sensitivities and specificities were calculated. The I_(2) statistic and Q test were used to test heterogeneity. The study was registered on the website of PROSERO(registration No. CRD42022357158).RESULTS Our search identified 595 articles, of which 12(including 855 patients) fulfilled the inclusion criteria. Bivariate analysis showed that the pooled sensitivity and specificity of 3D TOF MRA combined with HR T2WI for detecting NVC were 0.96 [95% confidence interval(CI): 0.92-0.98] and 0.92(95%CI: 0.74-0.98), respectively. The pooled positive likelihood ratio was 12.4(95%CI: 3.2-47.8), pooled negative likelihood ratio was 0.04(95%CI: 0.02-0.09), and pooled diagnostic odds ratio was 283(95%CI: 50-1620). The area under the receiver operating characteristic curve was 0.98(95%CI: 0.97-0.99). The studies showed no substantial heterogeneity(I2 = 0, Q = 0.001 P = 0.50).CONCLUSION Our results suggest that 3D TOF MRA combined with HR T2WI has excellent sensitivity and specificity for judging NVC in patients with TN or HFS. This method can be used as an effective tool for preoperative evaluation of MVD.
基金the TCL Science and Technology Innovation Fundthe Youth Science and Technology Talent Promotion Project of Jiangsu Association for Science and Technology,Grant/Award Number:JSTJ‐2023‐017+4 种基金Shenzhen Municipal Science and Technology Innovation Council,Grant/Award Number:JSGG20220831105002004National Natural Science Foundation of China,Grant/Award Number:62201468Postdoctoral Research Foundation of China,Grant/Award Number:2022M722599the Fundamental Research Funds for the Central Universities,Grant/Award Number:D5000210966the Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515110079。
文摘Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.
基金Supported by the National Natural Science Foundation of China(No.61340034)the Research Program of Application Foundation and Advanced Technology of Tianjin(No.13JCYBJC15600)
文摘As an ill-posed problem, multiframe blind super resolution imaging recovers a high resolution image from a group of low resolution images with some degradations when the information of blur kernel is limited. Note that the quality of the recovered image is influenced more by the accuracy of blur estimation than an advanced regularization. We study the traditional model of the multiframe super resolution and modify it for blind deblurring. Based on the analysis, we proposed two algorithms. The first one is based on the total variation blind deconvolution algorithm and formulated as a functional for optimization with the regularization of blur. Based on the alternating minimization and the gradient descent algorithm, the high resolution image and the unknown blur kernel are estimated iteratively. By using the median shift and add operator, the second algorithm is more robust to the outlier influence. The MSAA initialization simplifies the interpolation process to reconstruct the blurred high resolution image for blind deblurring and improves the accuracy of blind super resolution imaging. The experimental results demonstrate the superiority and accuracy of our novel algorithms.
基金National Key R&D Program of China,Grant/Award Number:2022YFC3300704National Natural Science Foundation of China,Grant/Award Numbers:62171038,62088101,62006023。
文摘Due to hardware limitations,existing hyperspectral(HS)camera often suffer from low spatial/temporal resolution.Recently,it has been prevalent to super-resolve a low reso-lution(LR)HS image into a high resolution(HR)HS image with a HR RGB(or mul-tispectral)image guidance.Previous approaches for this guided super-resolution task often model the intrinsic characteristic of the desired HR HS image using hand-crafted priors.Recently,researchers pay more attention to deep learning methods with direct supervised or unsupervised learning,which exploit deep prior only from training dataset or testing data.In this article,an efficient convolutional neural network-based method is presented to progressively super-resolve HS image with RGB image guidance.Specif-ically,a progressive HS image super-resolution network is proposed,which progressively super-resolve the LR HS image with pixel shuffled HR RGB image guidance.Then,the super-resolution network is progressively trained with supervised pre-training and un-supervised adaption,where supervised pre-training learns the general prior on training data and unsupervised adaptation generalises the general prior to specific prior for variant testing scenes.The proposed method can effectively exploit prior from training dataset and testing HS and RGB images with spectral-spatial constraint.It has a good general-isation capability,especially for blind HS image super-resolution.Comprehensive experimental results show that the proposed deep progressive learning method out-performs the existing state-of-the-art methods for HS image super-resolution in non-blind and blind cases.
文摘We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact of the diffraction limit of the underlying imaging system on the optimal SIM grating frequency that can be used to obtain the highest SR enhancement with non-continuous spatial frequency support. Besides confirming the previous theoretical and experimental work that SR-SIM can achieve an enhancement close to 3 times the diffraction limit with grating pattern illuminations, we also observe and report a series of more subtle effects of SR-SIM with non-continuous spatial frequency support. Our simulations show that when the SIM grating frequency exceeds twice that of the diffraction limit, the higher SIM grating frequency can help achieve a higher SR enhancement for the underlying imaging systems whose diffraction limit is low, though this enhancement is obtained at the cost of losing resolution at some lower resolution targets. Our simulations also show that, for underlying imaging systems with high diffraction limits, however, SR-SIM grating frequencies above twice the diffraction limits tend to bring no significant extra enhancement. Furthermore, we observed that there exists a limit grating frequency above which the SR enhancement effect is lost, and the reconstructed images essentially have the same resolution as the one obtained directly from the underlying imaging system without using the SIM process.
文摘A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, some engineering examples are selected to analyze the turbulence influences on image resolution based on three different atmospheric turbulence models quantificationally, for the airborne remote sensing system, the resolution errors caused by the atmospheric turbulence are less than 1 cm, and for the space-borne remote sensing system, the errors are around 1 cm. The results are similar to that obtained by the previous Friedmethod. Compared with the Fried-method, the arrival angle-method is rather simple and can be easily used in engineering fields.
文摘Road extraction plays an important role in many applications such as car navigation, but the manual extraction of roads is a laborious, tedious task. To speed the extraction of roads, an approach based on particle filtering to extract automatically roads from high resolution imagery is proposed. Particle filtering provides a statistical framework for propagating sample-based approximations of posterior distributions and has almost no restriction on the ingredients of the model. We integrate the similarity of grey value and the edge point distribution of roads into particle filtering to deal with complex scenes. To handle road appearance changes the tracking algorithm is allowed to update the road model during temporally stable image observations. A fully automatic initialization strategy is used. Experimental results show that the proposed approach is a promising and fully automatic method for extracting roads from images, even in the presence of occlusions.
文摘The dispersoid phase Al_(20)Cu_2Mn_3 in a 2024 Al alloy is commonly composed of twins,An ob- servation of corresponding high resolution image shows that the twin boundary plane is a glide plane other than mirror one.Two neighbouring components of twins are not symmetry of re- flection or rotation,but of glide reflection.The“diamond”glide plane is(101)and the glide vector is(1/4)(-).Components of twins in the phase take shape of prism with the longitudinal edge being parallel to[010]and side faces being{101}and{100}.
基金Project supported by the National Natural Science Foundation of China
文摘Based on the measurement model of inverse synthetic aperture radar (ISAR) within a small aspect sector,an imaging method was presented with the application of sparse signal processing.This method can form higher resolution inverse synthetic aperture radar images from compensating incomplete measured data,and improves the clarity of the images and makes the feature structure much more clear,which is helpful for target recognition.The simulation results indicate that this method can provide clear ISAR images with high contrast under complex motion case.
基金National Natural Science Foundation of China(No.41871305)National Key Research and Development Program of China(No.2017YFC0602204)+2 种基金Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGQY1945)Open Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education and the Fundamental Research Funds for the Central Universities(No.GLAB2019ZR02)Open Fund of Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources,China(No.KF-2020-05-068)。
文摘The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.
基金supported by the National Natural Science Foundation of China(31670552)the PAPD(Priority Academic Program Development)of Jiangsu provincial universities and the China Postdoctoral Science Foundation funded projectthis work was performed while the corresponding author acted as an awardee of the 2017 Qinglan Project sponsored by Jiangsu Province。
文摘Accurate information on the location and magnitude of vegetation change in scenic areas can guide the configuration of tourism facilities and the formulation of vegetation protection measures.High spatial resolution remote sensing images can be used to detect subtle vegetation changes.The major objective of this study was to map and quantify forest vegetation changes in a national scenic location,the Purple Mountains of Nanjing,China,using multi-temporal cross-sensor high spatial resolution satellite images to identify the main drivers of the vegetation changes and provide a reference for sustainable management.We used Quickbird images acquired in 2004,IKONOS images acquired in 2009,and WorldView2 images acquired in 2015.Four pixel-based direct change detection methods including the normalized difference vegetation index difference method,multi-index integrated change analysis(MIICA),principal component analysis,and spectral gradient difference analysis were compared in terms of their change detection performances.Subsequently,the best pixel-based detection method in conjunction with object-oriented image analysis was used to extract subtle forest vegetation changes.An accuracy assessment using the stratified random sampling points was conducted to evaluate the performance of the change detection results.The results showed that the MIICA method was the best pixel-based change detection method.And the object-oriented MIICA with an overall accuracy of 0.907 and a kappa coefficient of 0.846 was superior to the pixel-based MIICA.From 2004 to 2009,areas of vegetation gain mainly occurred around the periphery of the study area,while areas of vegetation loss were observed in the interior and along the boundary of the study area due to construction activities,which contributed to 79%of the total area of vegetation loss.During 2009–2015,the greening initiatives around the construction areas increased the forest vegetation coverage,accounting for 84%of the total area of vegetation gain.In spite of this,vegetation loss occurred in the interior of the Purple Mountains due to infrastructure development that caused conversion from vegetation to impervious areas.We recommend that:(1)a local multi-agency team inspect and assess law enforcement regarding natural resource utilization;and(2)strengthen environmental awareness education.
基金Supported by the Key Science and Technology Projects of Guizhou Province,China[(2007)3017,(2008)3022]Major Special Project of Guizhou Province,China(2006-6006-2)
文摘[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.
文摘Obtaining clear images of underwater scenes with descriptive details is an arduous task.Conventional imaging techniques fail to provide clear cut features and attributes that ultimately result in object recognition errors.Consequently,a need for a system that produces clear images for underwater image study has been necessitated.To overcome problems in resolution and to make better use of the Super-Resolution(SR)method,this paper introduces a novel method that has been derived from the Alpha Generative Adversarial Network(AlphaGAN)model,named Alpha Super Resolution Generative Adversarial Network(AlphaSRGAN).The model put forth in this paper helps in enhancing the quality of underwater imagery and yields images with greater resolution and more concise details.Images undergo pre-processing before they are fed into a generator network that optimizes and reforms the structure of the network while enhancing the stability of the network that acts as the generator.After the images are processed by the generator network,they are passed through an adversarial method for training models.The dataset used in this paper to learn Single Image Super Resolution(SISR)is the USR 248 dataset.Training supervision is performed by an unprejudiced function that simultaneously scrutinizes and improves the image quality.Appraisal of images is done with reference to factors like local style information,global content and color.The dataset USR 248 which has a huge collection of images has been used for the study is composed of three collections of images—high(640×480)and low(80×60,160×120,and 320×240).Paired instances of different sizes—2×,4×and 8×—are also present in the dataset.Parameters like Mean Opinion Score(MOS),Peak Signal-to-Noise Ratio(PSNR),Structural Similarity(SSIM)and Underwater Image Quality Measure(UIQM)scores have been compared to validate the improved efficiency of our model when compared to existing works.
文摘Research interest in multi-frame Superresolution has risen substantially in recent years. This paper presents a modified Projection Onto Convex Set (POCS) superresolution method based on wavelet transform. The method analyzes the image formation model from wavelet multiresolution analysis point of view and defines an closed convex set and its corresponding projection based on wavelet transform. An iterative procedure is utilized to reduce the estimated errors of the result image, and this guarantees the estimated image to lay in the intersection of different convex sets, thus produces a high resolution image with a reduced error. The effectiveness of the algorithm is demonstrated bv experimental results.
基金The MKE(the Ministry of Knowledge Economy),Korea,under the ITRC(Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency) (NIPA-2012-H0301-12-2006)
文摘This research paper recommends the point spread function(PSF)forecasting technique based on the projection onto convex set(POCS)and regularization to acquire low resolution images.As the environment for the production of user created contents(UCC)videos(one of the contents on the Internet)becomes widespread,resolution reduction and image distortion occurs,failing to satisfy users who desire high quality images.Accordingly,this research neutralizes the coding artifact through POCS and regularization processes by:1)factoring the local characteristics of the image when it comes to the noise that results during the discrete cosine transform(DCT)and quantization process;and 2)removing the blocking and ring phenomena which are problems with the existing video compression.Moreover,this research forecasts the point spread function to obtain low resolution images using the above-mentioned methods.Thus,a method is suggested for minimizing the errors found among the forecasting interpolation pixels.Low-resolution image quality obtained through the experiment demonstrates that significant enhancement was made on the visual level compared to the original image.
文摘Calman filtering method based on wavelet transform has been successfully applied to signal denoising. According to the different application methods and the realization forms of Calman filter, combined with the structural analysis of wavelet decomposition, we present kinds of multi-scale filtering methods into the category of the three. The simulation results show that the multi-scale Calman filtering method based on system layer has better performance. Synthetic aperture radar (SAR) images have rich texture information, which can reflect the spatial structure of objects. The texture feature is widely used in SAR image classification and SAR image segmentation. Affected by imaging factors, the direct use of texture features extracted from SAR images is not good enough. In order to avoid the traditional method of filtering followed the texture feature extraction caused by the loss of texture and edge information, this paper presents a texture feature extraction of SAR image, then using Robust PCA method, finally using texture feature clustering method K-means test after treatment with RPCA expression.
文摘Global motion estimation (GME) algorithms are widely applied to computer vision and video processing. In the previous works, the image resolutions are usually low for the real-time requirement (e.g. video stabilization). However, in some mobile devices applications (e.g. image sequence panoramic stitching), the high resolution is necessary to obtain satisfactory quality of panoramic image. However, the computational cost will become too expensive to be suitable for the low power consumption requirement of mobile device. The full search algorithm can obtain the global minimum with extremely computational cost, while the typical fast algorithms may suffer from the local minimum problem. This paper proposed a fast algorithm to deal with 2560 × 1920 high-resolution (HR) image sequences. The proposed method estimates the motion vector by a two-level coarse-to-fine scheme which only exploits sparse reference blocks (25 blocks in this paper) in each level to determine the global motion vector, thus the computational costs are significantly decreased. In order to increase the effective search range and robustness, the predictive motion vector (PMV) technique is used in this work. By the comparisons of computational complexity, the proposed algorithm costs less addition operations than the typical Three-Step Search algorithm (TSS) for estimating the global motion of the HR images without the local minimum problem. The quantitative evaluations show that our method is comparable to the full search algorithm (FSA) which is considered to be the golden baseline.
基金Supported by the project of Sanya Yazhou Bay Science and Technology City (Grant No:SCKJ-JYRC-2022-14)。
文摘To ensure project safety and secure public support, an integrated and comprehensive monitoring program is needed within a carbon capture and storage(CCS) project. Monitoring can be done using many well-established techniques from various fields, and the seismic method proves to be the crucial one. This method is widely used to determine the CO_(2) distribution, image the plume development, and quantitatively estimate the concentration. Because both the CO_(2) distribution and the potential migration pathway can be spatially small scale, high resolution for seismic imaging is demanded. However, obtaining a high-resolution image of a subsurface structure in marine settings is difficult. Herein, we introduce the novel Hcable(Harrow-like cable system) technique, which may be applied to offshore CCS monitoring. This technique uses a highfrequency source(the dominant frequency>100 Hz) to generate seismic waves and a combination of a long cable and several short streamers to receive seismic waves. Ultrahigh-frequency seismic images are achieved through the processing of Hcable seismic data. Hcable is then applied in a case study to demonstrate its detailed characterization for small-scale structures. This work reveals that Hcable is a promising tool for timelapse seismic monitoring of oceanic CCS.
基金Under the auspices of Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences(No.XDA05050602)Major State Basic Research Development Program of China(No.2010CB950904)+1 种基金National Natural Science Foundation of China(No.40921140410,41071344)Land Cover and Land Use Change Program of National Aeronautics and Space Administration,USA(No.NAG5-11160,NNG05GH80G)
文摘Double-and triple-cropping in a year have played a very important role in meeting the rising need for food in China.However,the intensified agricultural practices have significantly altered biogeochemical cycles and soil quality.Understanding and mapping cropping intensity in China′s agricultural systems are therefore necessary to better estimate carbon,nitrogen and water fluxes within agro-ecosystems on the national scale.In this study,we investigated the spatial pattern of crop calendar and multiple cropping rotations in China using phenological records from 394 agro-meteorological stations(AMSs)across China.The results from the analysis of in situ field observations were used to develop a new algorithm that identifies the spatial distribution of multiple cropping in China from moderate resolution imaging spectroradiometer(MODIS)time series data with a 500 m spatial resolution and an 8-day temporal resolution.According to the MODIS-derived multiple cropping distribution in 2002,the proportion of cropland cultivated with multiple crops reached 34%in China.Double-cropping accounted for approximately 94.6%and triple-cropping for 5.4%.The results demonstrat that MODIS EVI(Enhanced Vegetation Index)time series data have the capability and potential to delineate the dynamics of double-and triple-cropping practices.The resultant multiple cropping map could be used to evaluate the impacts of agricultural intensification on biogeochemical cycles.
基金This work was funded by the National Natural Science Foundation of China(U1603242)the Major Science and Technology Projects in Inner Mongolia,China(ZDZX2018054).
文摘The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin.In this study,the arid remote sensing ecological index(ARSEI)for large-scale arid areas was developed,which coupled the information of the greenness index,the salinity index,the humidity index,the heat index,and the land degradation index of arid areas.The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019.The results show that the greenness index,the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin,while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment.The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement,followed by deterioration,and finally further improvement.The spatial variation of these changes was significant.From 2000 to 2019,grassland and wasteland(saline alkali land and sandy land)in the central and western parts of the basin had the worst ecological environment quality.The areas with poor ecological environment quality are mainly distributed in rivers,wetlands,and cultivated land around lakes.During the period from 2000 to 2019,except for the surrounding areas of the Aral Sea,the ecological environment quality in other areas of the Aral Sea Basin has been improved in general.The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were–0.593 and 0.524,respectively.Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin.However,human activities had a greater impact.The ARSEI can quantitatively and intuitively reflect the scale and causes of large-scale and long-time period changes of the eco-environmental quality in arid areas;it is very suitable for the study of the eco-environmental quality in arid areas.