Single-pixel cameras, which employ either structured illumination or image modulation and compressive sensing algorithms, provide an alternative approach to imaging in scenarios where the use of a detector array is re...Single-pixel cameras, which employ either structured illumination or image modulation and compressive sensing algorithms, provide an alternative approach to imaging in scenarios where the use of a detector array is restricted or difficult because of cost or technological constraints. In this work, we present a robust imaging method based on compressive imaging that sets two thresholds to select the measurement data for image reconstruction. The experimental and numerical simulation results show that the proposed double-threshold compressive imaging protocol provides better image quality than previous compressive imaging schemes. Faster imaging speeds can be attained using this scheme because it requires less data storage space and computing time. Thus, this denoising method offers a very effective approach to promote the implementation of compressive imaging in real-time practical applications.展开更多
Single isocenter multiple target stereotactic radiosurgery (SIMT-SRS) has potentially emerged as a new pillar in radio-immune combination therapy for the management of brain metastasis. Accuracy and efficiency are pus...Single isocenter multiple target stereotactic radiosurgery (SIMT-SRS) has potentially emerged as a new pillar in radio-immune combination therapy for the management of brain metastasis. Accuracy and efficiency are pushed to a higher level in the era of the linear accelerator-based SIMT-SRS. This short review focuses on patient selection, image preparation, patient simulation, electronic portal imaging device (EPID) QA, and the patient treatment process in the SIMT-SRS treatment only. Image-relevant recommendations and guidelines are presented and contrast application, acquisition efficiency, and alignment accuracy of CT and MRI images are explored. With guidance, the SIMT-SRS can be implemented with high precision and efficiency. 1 mm or 0.5 mm and non-uniform PTV margin expansion for all targets would become possible. It will enhance cancer killing effect in radio-immune combination therapy. General routine daily, monthly, and annual linear accelerator image quality assurances are excluded.展开更多
Medical imaging, such as computed tomography (CT), magnetic resonance imaging (MRI) and positron emissiontomography (PET), plays a vital role for the decision-making in oncologic management. In clinical practice...Medical imaging, such as computed tomography (CT), magnetic resonance imaging (MRI) and positron emissiontomography (PET), plays a vital role for the decision-making in oncologic management. In clinical practice, imaging-derivedtumor metrics are routinely applied in oncologic management as an imaging biomarker. For example, the ResponseEvaluation Criteria in Solid Tumors (RECIST) are commonly used for tumor treatment response evaluation based on thedynamic changes in tumor size. However, the current cross-sectional images are interpreted qualitatively for lesioncharacterization, treatment response evaluation and prognostic prediction by highly trained radiologists, which hasincreasingly apparent limitations. Therefore, there is a demanding shift toward more quantitative imaging interpretation.展开更多
Objective To evaluate the application of phasecontrast cine magnetic resonance imaging (MRI) in endoscopic aqueductoplasty for patients with obstructive hydrocephalus. Methods The clinical diagnosis of hydrocephalus d...Objective To evaluate the application of phasecontrast cine magnetic resonance imaging (MRI) in endoscopic aqueductoplasty for patients with obstructive hydrocephalus. Methods The clinical diagnosis of hydrocephalus due to aqueduct obstruction in 23 patients was confirmed by phase contrast cine MRI examination.展开更多
Focusing in solids by surface transducer arrays ( STA ) and the acoustic field distribution on the focal axis are studied in this paper. The relation between the source element width and the field strength at differen...Focusing in solids by surface transducer arrays ( STA ) and the acoustic field distribution on the focal axis are studied in this paper. The relation between the source element width and the field strength at different order focuses is also discussed. Numerical calculation is used to get the focal field distribution as the element width is changed. Some practical problems such as the minimum distinguishable frequency, the transversal and longitudinal resolution are investigated when this kind of focusing is used for NDT and acoustic imaging. Some explorative experiments have been done to demonstrate the theory.展开更多
With the maturation of satellite technology,Hyperspectral Remote Sensing(HRS)platforms have developed from the initial ground-based and airborne platforms into spaceborne platforms,which greatly promotes the civil app...With the maturation of satellite technology,Hyperspectral Remote Sensing(HRS)platforms have developed from the initial ground-based and airborne platforms into spaceborne platforms,which greatly promotes the civil application of HRS imagery in the fields of agriculture,forestry,and environmental monitoring.China is playing an important role in this evolution,especially in recent years,with the successful launch and operation of a series of civil hyper-spectral spacecraft and satellites,including the Shenzhou-3 spacecraft,the Gaofen-5 satellite,the SPARK satellite,the Zhuhai-1 satellite network for environmental and resources monitoring,the FengYun series of satellites for meteorological observation,and the Chang’E series of spacecraft for planetary exploration.The Chinese spaceborne HRS platforms have various new characteristics,such as the wide swath width,high spatial resolution,wide spectral range,hyperspectral satellite networks,and microsatellites.This paper focuses on the recent progress in Chinese spaceborne HRS,from the aspects of the typical satellite systems,the data processing,and the applications.In addition,the future development trends of HRS in China are also discussed and analyzed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11675014,61605218,61601442,61575207,and 61474123)the National Major Scientific Instruments Development Project of China(No.2013YQ030595)+2 种基金the National Defense Science and Technology Innovation Foundation of Chinese Academy of Sciences,the Science and Technology Innovation Foundation of Chinese Academy of Sciences(No.CXJJ-16S047)the Program of International Science and Technology Cooperation(No.2016YFE0131500)the Advance Research Project(No.30102070101)
文摘Single-pixel cameras, which employ either structured illumination or image modulation and compressive sensing algorithms, provide an alternative approach to imaging in scenarios where the use of a detector array is restricted or difficult because of cost or technological constraints. In this work, we present a robust imaging method based on compressive imaging that sets two thresholds to select the measurement data for image reconstruction. The experimental and numerical simulation results show that the proposed double-threshold compressive imaging protocol provides better image quality than previous compressive imaging schemes. Faster imaging speeds can be attained using this scheme because it requires less data storage space and computing time. Thus, this denoising method offers a very effective approach to promote the implementation of compressive imaging in real-time practical applications.
文摘Single isocenter multiple target stereotactic radiosurgery (SIMT-SRS) has potentially emerged as a new pillar in radio-immune combination therapy for the management of brain metastasis. Accuracy and efficiency are pushed to a higher level in the era of the linear accelerator-based SIMT-SRS. This short review focuses on patient selection, image preparation, patient simulation, electronic portal imaging device (EPID) QA, and the patient treatment process in the SIMT-SRS treatment only. Image-relevant recommendations and guidelines are presented and contrast application, acquisition efficiency, and alignment accuracy of CT and MRI images are explored. With guidance, the SIMT-SRS can be implemented with high precision and efficiency. 1 mm or 0.5 mm and non-uniform PTV margin expansion for all targets would become possible. It will enhance cancer killing effect in radio-immune combination therapy. General routine daily, monthly, and annual linear accelerator image quality assurances are excluded.
文摘Medical imaging, such as computed tomography (CT), magnetic resonance imaging (MRI) and positron emissiontomography (PET), plays a vital role for the decision-making in oncologic management. In clinical practice, imaging-derivedtumor metrics are routinely applied in oncologic management as an imaging biomarker. For example, the ResponseEvaluation Criteria in Solid Tumors (RECIST) are commonly used for tumor treatment response evaluation based on thedynamic changes in tumor size. However, the current cross-sectional images are interpreted qualitatively for lesioncharacterization, treatment response evaluation and prognostic prediction by highly trained radiologists, which hasincreasingly apparent limitations. Therefore, there is a demanding shift toward more quantitative imaging interpretation.
文摘Objective To evaluate the application of phasecontrast cine magnetic resonance imaging (MRI) in endoscopic aqueductoplasty for patients with obstructive hydrocephalus. Methods The clinical diagnosis of hydrocephalus due to aqueduct obstruction in 23 patients was confirmed by phase contrast cine MRI examination.
文摘Focusing in solids by surface transducer arrays ( STA ) and the acoustic field distribution on the focal axis are studied in this paper. The relation between the source element width and the field strength at different order focuses is also discussed. Numerical calculation is used to get the focal field distribution as the element width is changed. Some practical problems such as the minimum distinguishable frequency, the transversal and longitudinal resolution are investigated when this kind of focusing is used for NDT and acoustic imaging. Some explorative experiments have been done to demonstrate the theory.
基金This work was supported by National Natural Science Foundation of China under Grant Nos.42071350,41820104006,41771385 and 41622107supported by Postdoctoral Research Foundation of China.
文摘With the maturation of satellite technology,Hyperspectral Remote Sensing(HRS)platforms have developed from the initial ground-based and airborne platforms into spaceborne platforms,which greatly promotes the civil application of HRS imagery in the fields of agriculture,forestry,and environmental monitoring.China is playing an important role in this evolution,especially in recent years,with the successful launch and operation of a series of civil hyper-spectral spacecraft and satellites,including the Shenzhou-3 spacecraft,the Gaofen-5 satellite,the SPARK satellite,the Zhuhai-1 satellite network for environmental and resources monitoring,the FengYun series of satellites for meteorological observation,and the Chang’E series of spacecraft for planetary exploration.The Chinese spaceborne HRS platforms have various new characteristics,such as the wide swath width,high spatial resolution,wide spectral range,hyperspectral satellite networks,and microsatellites.This paper focuses on the recent progress in Chinese spaceborne HRS,from the aspects of the typical satellite systems,the data processing,and the applications.In addition,the future development trends of HRS in China are also discussed and analyzed.