期刊文献+
共找到332,918篇文章
< 1 2 250 >
每页显示 20 50 100
Development of a toroidal soft x-ray imaging system and application for investigating three-dimensional plasma on J-TEXT
1
作者 赵传旭 李建超 +9 位作者 张晓卿 王能超 丁永华 杨州军 江中和 严伟 李杨波 毛飞越 任正康 the J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期94-99,共6页
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat... A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma. 展开更多
关键词 SXR imaging J-TEXT tokamak three-dimensional measurement MHD
下载PDF
Five-view three-dimensional reconstructionfor ultrafast dynamic imaging of pulsedradiation sources
2
作者 Jianpeng Gao Liang Sheng +6 位作者 Xinyi Wang Yanhong Zhang Liang Li Baojun Duan Mei Zhang Yang Li Dongwei Hei 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第2期63-73,共11页
Multiaxial neutron/x-ray imaging and three-dimensional (3D) reconstruction techniques play a crucial role in gaining valuable insights intothe generation and evolution mechanisms of pulsed radiation sources. Owing to ... Multiaxial neutron/x-ray imaging and three-dimensional (3D) reconstruction techniques play a crucial role in gaining valuable insights intothe generation and evolution mechanisms of pulsed radiation sources. Owing to the short emission time (∼200 ns) and drastic changes of thepulsed radiation source, it is necessary to acquire projection data within a few nanoseconds in order to achieve clear computed tomography3D imaging. As a consequence, projection data that can be used for computed tomography image reconstruction at a certain moment are oftenavailable for only a few angles. Traditional algorithms employed in the process of reconstructing 3D images with extremely incomplete datamay introduce significant distortions and artifacts into the final image. In this paper, we propose an iterative image reconstruction methodusing cylindrical harmonic decomposition and a self-supervised denoising network algorithm based on the deep image prior method. Weaugment the prior information with a 2D total variation prior and a 3D deep image prior. Single-wire Z-pinch imaging experiments have beencarried out at Qin-1 facility in five views and four frames, with a time resolution of 3 ns for each frame and a time interval of 40 ns betweenadjacent frames. Both numerical simulations and experiments verify that our proposed algorithm can achieve high-quality reconstructionresults and obtain the 3D intensity distribution and evolution of extreme ultraviolet and soft x-ray emission from plasma. 展开更多
关键词 FRAMES image SOURCES
下载PDF
Three-dimensional Imaging of Multi-slice Spiral CT in Bronchial Artery Correlative Study on Blood Supply of Central Lung Cancer and Its Clinical Significance 被引量:4
3
作者 李智勇 杨冬 +2 位作者 伍建林 黎庶 董天 《The Chinese-German Journal of Clinical Oncology》 CAS 2005年第1期40-42,67,共4页
Objective: To evaluate three-dimensional bronchial artery imaging charactersin central lung cancer and applied values with multi-slice spiral CT (MSCT) to provide theoreticalevidence on blood supply and intervention t... Objective: To evaluate three-dimensional bronchial artery imaging charactersin central lung cancer and applied values with multi-slice spiral CT (MSCT) to provide theoreticalevidence on blood supply and intervention therapy. Methods: Eighteen patients with central lungcancer underwent MSCT with real time helical thin-slice CT scanning. Three-dimensional bronchialartery reconstruction was done at the console work-station. The space anatomical characters ofbronchial artery were observed through different rotations. Results: For 6 cases, thethree-dimensional images of bronchial artery (33.33%) could exactly show the origins, the routes(lung inner segment and mediatism segment) and the diameters of bronchial arteries. Vision rate ofbronchial arteries was the highest in pulmonary artery stricture and truncation groups, and thevessels' diameter became larger apparently. These characters demonstrated blood supply of this kindof central lung cancer come from bronchial artery. Volume rendering images were the best ones amongthree-dimensional images. Conclusion: Three-dimensional imaging with MSCT in bronchial artery canreveal the anatomical characters of bronchial artery and provide theoretical evidence on bloodsupply and intervention therapy of central lung cancer. 展开更多
关键词 bronchial artery multi-slice spiral CT three-dimensional reconstruction ANGIOGRAPHY
下载PDF
Using restored two-dimensional X-ray images to reconstruct the three-dimensional magnetopause 被引量:2
4
作者 RongCong Wang JiaQi Wang +3 位作者 DaLin Li TianRan Sun XiaoDong Peng YiHong Guo 《Earth and Planetary Physics》 EI CSCD 2024年第1期133-154,共22页
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph... Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) soft X-ray imager MAGNETOPAUSE image restoration
下载PDF
Advancement in utilization of magnetic resonance imaging and biomarkers in the understanding of schizophrenia
5
作者 Aidan K Tirpack Danyaal G Buttar Mandeep Kaur 《World Journal of Clinical Cases》 SCIE 2025年第1期11-15,共5页
Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to... Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to make the diagnosis and manage psychiatric disorders remains a distant goal.There have been several studies that examine brain imaging in psychiatric disorders,but more work is needed to elucidate the complexities of the human brain.In this editorial,we examine two articles by Xu et al and Stoyanov et al,that show developments in the direction of using neuroimaging to examine the brains of people with schizo-phrenia and depression.Xu et al used magnetic resonance imaging to examine the brain structure of patients with schizophrenia,in addition to examining neurotransmitter levels as biomarkers.Stoyanov et al used functional magnetic resonance imaging to look at modulation of different neural circuits by diagnostic-specific scales in patients with schizophrenia and depression.These two studies provide crucial evidence in advancing our understanding of the brain in prevalent psychiatric disorders. 展开更多
关键词 SCHIZOPHRENIA Magnetic resonance imaging Biomarkers NEUROTRANSMITTERS Psychiatric disorders
下载PDF
Temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries on magnetic resonance imaging
6
作者 Holly Flyger Samantha J.Holdsworth +2 位作者 Alistair J.Gunn Laura Bennet Hamid Abbasi 《Neural Regeneration Research》 SCIE CAS 2025年第11期3144-3150,共7页
Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed asse... Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes. 展开更多
关键词 magnetic resonance imaging neonatal hypoxic-ischemic encephalopathy neurodevelopmental outcomes prognostic biomarkers in neuroimaging scan timing therapeutic hypothermia
下载PDF
Magnetic resonance imaging evaluation and nuclear receptor binding SET domain protein 1 mutation in the Sotos syndrome with attention-deficit/hyperactivity disorder
7
作者 Wei Zhu 《World Journal of Clinical Cases》 SCIE 2025年第2期5-9,共5页
Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopme... Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD. 展开更多
关键词 Sotos syndrome Attention-deficit/hyperactivity disorder Genetic mutation Magnetic resonance imaging Wavelet fusion
下载PDF
Recent progress in the applications of presynaptic dopaminergic positron emission tomography imaging in parkinsonism
8
作者 Yujie Yang Xinyi Li +7 位作者 Jiaying Lu Jingjie Ge Mingjia Chen Ruixin Yao Mei Tian Jian Wang Fengtao Liu Chuantao Zuo 《Neural Regeneration Research》 SCIE CAS 2025年第1期93-106,共14页
Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.... Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders. 展开更多
关键词 aromatic amino acid decarboxylase brain imaging dopamine transporter Parkinson’s disease PARKINSONISM positron emission tomography presynaptic dopaminergic function vesicle monoamine transporter type 2
下载PDF
Application of Three-Dimensional Magnetic Resonance Imaging in the Diagnosis of Perianal Abscess 被引量:5
9
作者 Fang Zhang Shan Xiong +1 位作者 Sibin Liu Peng Xia 《Health》 2019年第5期535-545,共11页
Perianal abscess is a common disease in anorectal surgery. If the diagnosis is not clear and the cure is thoroughly cleared, the recurrence and spread of anal fistula will cause life-long pain. Objective: To investiga... Perianal abscess is a common disease in anorectal surgery. If the diagnosis is not clear and the cure is thoroughly cleared, the recurrence and spread of anal fistula will cause life-long pain. Objective: To investigate the application of 3.0T MRI 3D CUBE T2WI lipid suppression sequence in the diagnosis of perianal abscess. Methods: Thirty-six patients with perianal abscess confirmed by operation were examined with 2D T2WI and 3D CUBE T2WI lipid suppression sequences before operation. Two imaging techniques were evaluated to show the types of perianal abscess, the number of abscesses, the number of internal orifices of abscess, and the number of fistula branches with anal fistula in abscess. Results: Among 36 cases of perianal abscess, there were 5 cases of anal subcutaneous abscess, 12 cases of ischiorectal space abscess (8 cases complicated with anal fistula), 6 cases of posterior anal space abscess, 5 cases of anal sphincter abscess (3 cases complicated with anal fistula), 2 cases of high intermuscular abscess, 2 cases of rectal submucosal abscess, 3 cases of complex abscess (3 cases complicated with anal fistula), 1 case of misdiagnosis, 2D T2WI lipid suppression sequence and 3D CUBE T2WI suppression. The accuracy of lipid sequence abscess typing was 80.6% (29/36) and 88.9% (32/36), respectively, with no significant difference (P > 0.05). Thirty-six patients were surgically diagnosed as having 32 internal orifices, 68.8% (22/32) and 93.8% (30/32) of 2D T2WI and 3D CUBE T2WI lipid-suppressing sequences, respectively, with significant difference (P Conclusion: 3D CUBE T2WI lipid suppression sequence is superior to 2D T2WI lipid suppression sequence in the classification of perianal abscess, the number of internal orifices of abscess and the number of fistula branches of abscess complicated with anal fistula. It can also determine the number of internal orifices of abscess complicated with anal fistula, the number of fistula branches, the shape of primary and branch fistula and the relationship among pelvic floor muscle tissues. It can provide more accurate images for preoperative and intraoperative clinical surgery. 展开更多
关键词 Magnetic RESONANCE imaging three-dimensional imaging PERIANAL ABSCESS
下载PDF
Real-time Three-Dimensional Color Doppler Flow Imaging: An Improved Technique for Quantitative Analysis of Aortic Regurgitation 被引量:3
10
作者 吕清 刘夏天 +3 位作者 谢明星 王新房 王静 庄磊 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第1期148-152,共5页
The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT... The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF. 展开更多
关键词 real-time three-dimensional echocardiography color Doppler flow imaging aortic regurgitation
下载PDF
Magnetic resonance imaging with three-dimensional fast imaging employing steady-state acquisition with phase-cycled and short T1 inversion recovery pulse sequence for evaluating brachial plexus injury 被引量:7
11
作者 Dianxiu Ning Meiyu Sun +11 位作者 Bo Sun Li Zhao Weisheng Zhang Lijun Wang Shaowu Wang Ailian Liu Jianlin Wu Zhijin Lang Di Ning Guanfu Liu Xiaochen Ji Xiufeng Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第14期1097-1102,共6页
There is a large amount of fat in the postganglionic segment of the brachial plexus nerve.The use of short T1 inversion recovery pulse sequence may improve signal strength of the brachial plexus postganglionic segment... There is a large amount of fat in the postganglionic segment of the brachial plexus nerve.The use of short T1 inversion recovery pulse sequence may improve signal strength of the brachial plexus postganglionic segment.The present study revealed that the combination of three-dimensional fast imaging employing steady-state acquisition with phase-cycled and short T1 inversion recovery pulse sequence clearly displayed the anatomical morphology and structure of the brachial plexus nerve,together with maximum intensity projection,volume rendering and other three-dimensional reconstruction techniques.Our results suggested that this method is also suitable for providing accurate assessment and diagnosis of the site,severity and scope of brachial plexus injury. 展开更多
关键词 brachial plexus i-njury magnetic resonance imaging pulse sequence reconstruction
下载PDF
Terahertz Three-Dimensional Imaging Based on Computed Tomography with Photonics-Based Noise Source 被引量:4
12
作者 周涛 张戎 +3 位作者 姚辰 符张龙 邵棣祥 曹俊诚 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第8期76-78,共3页
Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the ... Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications. 展开更多
关键词 THz Terahertz three-dimensional imaging Based on Computed Tomography with Photonics-Based Noise Source
下载PDF
Three-dimensional imaging identified the accessory bile duct in a patient with cholangiocarcinoma 被引量:7
13
作者 Ryoichi Miyamoto Yukio Oshiro +4 位作者 Shinji Hashimoto Keisuke Kohno Kiyoshi Fukunaga Tatsuya Oda Nobuhiro Ohkohchi 《World Journal of Gastroenterology》 SCIE CAS 2014年第32期11451-11455,共5页
The development of diagnostic imaging technology, such as multidetector computed tomography(MDCT) and magnetic resonance cholangiopancreatography(MRCP), has made it possible to obtain detailed images of the bile duct.... The development of diagnostic imaging technology, such as multidetector computed tomography(MDCT) and magnetic resonance cholangiopancreatography(MRCP), has made it possible to obtain detailed images of the bile duct. Recent reports have indicated that a 3-dimensional(3D) reconstructed imaging system would be useful for understanding the liver anatomy before surgery. We have investigated a novel method that fuses MDCT and MRCP images. This novel system easily made it possible to detect the anatomical relationship between the vessels and bile duct in the portal hepatis. In this report, we describe a very rare case of extrahepatic cholangiocarcinoma associated with an accessory bile duct from the caudate lobe connecting with the intrapancreatic bile duct. We were unable to preoperatively detect this accessory bile duct using MDCT and MRCP. However, prior to the second operation, we were able to clearly visualise the injured accessory bile duct using our novel 3D imaging modality. In thisreport, we suggest that this imaging technique can be considered a novel and useful modality for understanding the anatomy of the portal hepatis, including the hilar bile duct. 展开更多
关键词 3-dimensional imaging Hepatobiliary and pancreatic surgery Accessory bile duct Caudate lobe bile duct CHOLANGIOCARCINOMA
下载PDF
Continuous imaging space in three-dimensional integral imaging 被引量:1
14
作者 张雷 杨勇 +3 位作者 王金刚 赵星 方志良 袁小聪 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期303-305,共3页
We report an integral imaging method with continuous imaging space. This method simultaneously reconstructs real and virtual images in the virtual mode, with a minimum gap that separates the entire imaging space into ... We report an integral imaging method with continuous imaging space. This method simultaneously reconstructs real and virtual images in the virtual mode, with a minimum gap that separates the entire imaging space into real and virtual space. Experimental results show that the gap is reduced to 45% of that in a conventional integral imaging system with the same parameters. 展开更多
关键词 three-dimensional integral imaging imaging space
下载PDF
Prenatal Diagnosis of Sirenomelia by Two-Dimensional and Three-Dimensional Skeletal Imaging Ultrasound 被引量:1
15
作者 刘蓉 陈欣林 +1 位作者 杨小红 马慧静 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2015年第6期928-931,共4页
Summary: This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Be- tween Septem... Summary: This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Be- tween September 2010 and April 2014, a prospective study was conducted in a single referral center using 3D-SU1S performed after 2D-US in 10 cases of sirenomelia. Diagnostic accuracy and detailed findings were compared with postnatal three-dimensional helical computed tomography (3D-HCT), radiological findings and autopsy. Pregnancy was terminated in all 10 sirenomelia cases, including 9 singletons and I conjoined twin pregnancy, for a total of 5 males and 5 females. These cases of sirenomelia were deter- mined by autopsy and/or chromosomal examination. Initial 2D-US showed that there were 10 cases of oligohydranmios, bilateral renal agenesis, bladder agenesis, single umbilical artery, fusion of the lower limbs and spinal abnormalities; 8 cases of dipus or monopus; 2 cases of apus; and 8 cases of cardiac abnormalities. Subsequent 3D-SUIS showed that there were 9 cases of scoliosis, l0 cases of sacrococ- cygeal vertebra dysplasia, 3 cases of hemivertebra, 1 case of vertebral fusion, 3 cases of spina bifida, and 5 cases of rib abnormalities. 3D-SUIS identified significantly more skeletal abnormalities than did 2D-US, and its accuracy was 79.5% (70/88) compared with 3D-HCT and radiography. 3D-SUIS seems to be a useful complementary method to 2D-US and may improve the accuracy of identifying prenatal skeletal abnormalities related to sirenomelia. 展开更多
关键词 SIRENOMELIA three-dimensional skeletal imaging ultrasound three-dimensional helicalcomputed tomography
下载PDF
Near-Range Large Field-of-View Three-Dimensional Photon-Counting Imaging with a Single-Pixel Si-Avalanche Photodiode 被引量:3
16
作者 Guang-Yue Shen Tian-Xiang Zheng +4 位作者 Bing-Cheng Du Yang Lv E Wu Zhao-Hui Li Guang Wu 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第11期38-41,共4页
Large field-of-view(FoV) three-dimensional(3 D) photon-counting imaging is demonstrated with a single-pixel single-photon detector based on a Geiger-mode Si-avalanche photodiode. By removing the collecting lens(C... Large field-of-view(FoV) three-dimensional(3 D) photon-counting imaging is demonstrated with a single-pixel single-photon detector based on a Geiger-mode Si-avalanche photodiode. By removing the collecting lens(CL)before the detector, the FoV is expanded to ±10°. Thanks to the high detection efficiency, the signal-to-noise ratio of the imaging system is as high as 7.8 dB even without the CL when the average output laser pulse energy is about 0.45 pJ/pulse for imaging the targets at a distance of 5 m. A 3 D image overlaid with the reflectivity data is obtained according to the photon-counting time-of-flight measurement and the return photon intensity. 展开更多
关键词 Near-Range Large Field-of-View three-dimensional Photon-Counting imaging with a Single-Pixel Si-Avalanche Photodiode SI
下载PDF
GPU-accelerated three-dimensional reconstruction method of the Compton camera and its application in radionuclide imaging 被引量:1
17
作者 Ren-Yao Wu Chang-Ran Geng +6 位作者 Feng Tian Zhi-Yang Yao Chun-Hui Gong Hao-Nan Han Jian-Feng Xu Yong-Shun Xiao Xiao-Bin Tang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期54-68,共15页
A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method wit... A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method with scattering angle correction(CSS-BP-SC) can quickly perform the back-projection process of the Compton cone and can be used to precompute the list-mode maximum likelihood expectation maximization(LM-MLEM). A dedicated parallel architecture was designed for the graphics processing unit acceleration of the back-projection and iteration stage of the CSS-BP-SC-based LM-MLEM. The imaging results of the two-point source Monte Carlo(MC) simulation demonstrate that by analyzing the full width at half maximum along the three coordinate axes, the CSS-BP-SC-based LM-MLEM can obtain imaging results comparable to those of the traditional reconstruction algorithm, that is, the simple back-projection-based LM-MLEM. The imaging results of the mouse phantom MC simulation and experiment demonstrate that the reconstruction results obtained by the proposed method sufficiently coincide with the set radioactivity distribution, and the speed increased by more than 664 times compared to the traditional reconstruction algorithm in the mouse phantom experiment. The proposed method will further advance the imaging applications of Compton cameras. 展开更多
关键词 Compton camera three-dimensional reconstruction Radionuclide imaging GPU
下载PDF
A rapid micro-magnetic resonance imaging scanning for three-dimensional reconstruction of peripheral nerve fascicles 被引量:2
18
作者 Zhi Yao Li-Wei Yan +7 位作者 Tao Wang Shuai Qiu Tao Lin Fu-Lin He Ru-Heng Yuan Xiao-Lin Liu Jian Qi Qing-Tang Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第11期1953-1960,共8页
The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual worklo... The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual workload and poor image registration. Micro-magnetic resonance imaging(Micro-MRI), an emerging radiology technique, has been used to report results in the brain, liver and tumor tissues. However, micro-MRI usage for obtaining intraneural structures has not been reported. The aim of this study was to present a new imaging method for three-dimensional reconstruction of peripheral nerve fascicles by ~1T micro-MRI. Freshly harvested sciatic nerve samples from an amputated limb were divided into four groups. Two different scanning conditions(Mannerist Solution/GD-DTPA contrast agent, distilled water) were selected, and both T1 and T2 phases programmed for each scanning condition. Three clinical surgeons evaluated the quality of the images via a standardized scale. Moreover, to analyze deformation of the two-dimensional image, the nerve diameter and total area of the micro-MRI images were compared after hematoxylin-eosin staining. The results show that rapid micro-MRI imaging method can be used for three-dimensional reconstruction of the fascicle structure. Nerve sample immersed in contrast agent(Mannerist Solution/GD-DTPA) and scanned in the T1 phase was the best. Moreover, the nerve sample was scanned freshly and can be recycled for other procedures. MRI images show better stability and smaller deformation compared with histological images. In conclusion, micro-MRI provides a feasible and rapid method for three-dimensional reconstruction of peripheral nerve fascicles, which can clearly show the internal structure of the peripheral nerve. 展开更多
关键词 nerve regeneration peripheral nerve fascicular three-dimensional reconstruction fascicular topography micro-magnetic resonanceimaging rapid acquired images contrast agent Mannerist Solution histological techniques deformation analysis peripheral nerve injury neural regeneration
下载PDF
Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering 被引量:1
19
作者 Feng Fu Zhe Qin +10 位作者 Chao Xu Xu-yi Chen Rui-xin Li Li-na Wang Ding-wei Peng Hong-tao Sun Yue Tu Chong Chen Sai Zhang Ming-liang Zhao Xiao-hong Li 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第4期614-622,共9页
Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to crea... Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer- aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine. 展开更多
关键词 nerve regeneration three-dimensional printing traumatic brain injury tissue engineering scaffolds magnetic resonance imaging COLLAGEN CHITOSAN MIMICS neural regeneration
下载PDF
Role of three-dimensional imaging integration in atrial fibrillation ablation 被引量:5
20
作者 Roberto De Ponti Raffaella Marazzi +4 位作者 Domenico Lumia Giuseppe Picciolo Roberto Biddau Carlo Fugazzola Jorge A Salerno-Uriarte 《World Journal of Cardiology》 CAS 2010年第8期215-222,共8页
Atrial fibrillation is the most common arrhythmia and in symptomatic patients with a drug-refractory form,catheter ablation aimed at electrically disconnecting the pulmonary veins(PVs) has proved more effective than u... Atrial fibrillation is the most common arrhythmia and in symptomatic patients with a drug-refractory form,catheter ablation aimed at electrically disconnecting the pulmonary veins(PVs) has proved more effective than use of antiarrhythmic drugs in maintaining sinus rhythm during follow-up.On the other hand,this ablation procedure is complex,requires specific training and adequate clinical experience.A main challenge is represented by the need for accurate sequential positioning of the ablation catheter around each veno-atrial junction to deliver point-by-point radiofrequency energy applications in order to achieve complete and persistent electrical disconnection of the PVs.Imaging integration is a new technology that enables guidance during this procedure by showing a three-dimensional,pre-acquired computed tomography or magnetic resonance image and the relative real-time position of the ablation catheter on the screen of the electroanatomic system.Reports in the literature suggest that imaging integration provides accurate visual information with improvement in the procedure parameters and/or clinical outcomes of the procedure. 展开更多
关键词 CATHETER ablation ATRIAL FIBRILLATION Electroanatomic mapping MULTISLICE COMPUTED TOMOGRAPHY Magnetic resonance imaging
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部