Exit delamination is excessive drilling thrust force.Therefore,it is necessary to investigate the critical thrust force which cause exit delamination when carbon fibre reinforced plastics(CRFP)is drilled.According to ...Exit delamination is excessive drilling thrust force.Therefore,it is necessary to investigate the critical thrust force which cause exit delamination when carbon fibre reinforced plastics(CRFP)is drilled.According to the linear elastic fracture mechanics,the mechanics of composite material and the classical thin plate bending theory,a common theoretical model of the critical drilling thrust force for CFRP plates is established.Compared with the experimental data of previous studies,the results show that the theoretical values agree well with the experimental values.This model can be used to forecast the critical thrust force for the drilling-induced delamination of CFRP.展开更多
Drilling is indispensable process and it cannot be avoided for joining composite structures used in various engineering applications. In this research article, the influence of drilling parameters on thrust force and ...Drilling is indispensable process and it cannot be avoided for joining composite structures used in various engineering applications. In this research article, the influence of drilling parameters on thrust force and torque of silica (SiO2) and alumina (Al2O3) filled into glass fabric reinforced epoxy (G-E) composites are analyzed. Drilling experiments are conducted on these composite materials using BATLIBOI make radial drilling machine. Two different drill bits (HSS and cemented carbide) are used for the experimentation. The influence of drilling parameters like cutting speed and feed on thrust force and torque on drilling of particulate filled G-E composites has been carried out. The experimental results indicated that the thrust force and torque were increased with increasing feed and cutting speed for all the composites tested. Further, it is observed that the carbide drill performed better than HSS drill during drilling of particulate filled G-E composites. The drilled surfaces are examined using scanning electron microscopy (SEM) and damage mechanisms are discussed.展开更多
An optimal configuration of the flux-reversal linear synchronous motor (FRLSM) with the optimal number of attachment permanent magnets (PMs) was presented. The optimal model of 2 000 N was designed to reduce the deten...An optimal configuration of the flux-reversal linear synchronous motor (FRLSM) with the optimal number of attachment permanent magnets (PMs) was presented. The optimal model of 2 000 N was designed to reduce the detent force by redesigning the air-gap structure and skewing. The design parameters,mover PMs and stator core,were selected for optimal design by DOE. The thrust and the detent force of the designed optimal models were compared by finite element analysis (FEA). As a result,the thrust of the optimal model is slightly decreased by 1.97% compared with the basic model,and the detent force of the optimal model is greatly decreased by 88.47% compared with the basic model.展开更多
For a new type of toroidal permanent magnet linear motor(TPMLSM), this paper analyzes the thrust fluctuation in the constant acceleration operation of the motor from the Angle of the cogging force of the linear motor....For a new type of toroidal permanent magnet linear motor(TPMLSM), this paper analyzes the thrust fluctuation in the constant acceleration operation of the motor from the Angle of the cogging force of the linear motor. For the motor whose structure has been determined and processed, the structural parameters of the motor cannot be changed, and its performance cannot be improved from the perspective of the motor body.Therefore, this paper tries to consider the influence of the cogging force on the normal operation of the motor from the perspective of control. In this paper, starting from the body structure of motor, first on the annular linear motor of the cogging force characteristics were extracted, and its expression is obtained by Fourier decomposition, then investigated considering the cogging force and does not consider the cogging force control of motor model, it can be seen that the control performance deteriorates significantly after considering cogging force of the motor, and the acceleration fluctuation increases significantly during the operation of the motor. On this basis, disturbance observation algorithm is introduced, and feedforward compensation is carried out by extracting the characteristic values of the disturbance model. The results show that the disturbance observer can suppress the thrust fluctuation caused by the motor cogging force to a large extent, and it can reduce the peak-to-peak value of the thrust fluctuation by more than 85% during the motor acceleration operation.展开更多
Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe struct...Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe structure was studied comprehensively using geomechanics,fault mechanics,elastic mechanics,and Coulomb's law of friction.First,using the centrifugal inertia force of Earth's rotation as a source,a mechanical model of N-S compression superimposed with W-E reverse torsion was established to explain the formation of the early Yima coal basin and Jurassic Yima Group coal measures.Second,an equation for the ultimate stress in the forming stage of F16 was derived using the plastic slip-line field theory and the parabolic Mohr failure criterion.Moreover,the distribution of ultimate stress and the geometric characteristics of the fault profile were obtained using the field model parameters.Finally,the stress field of F16 and the mechanical genesis of the large-scale reverse thrust sheet were discussed based on elastic mechanics theory and Coulomb's law of friction.The results show that the tectonic framework of the early Yima coal basin and the formation pattern of Jurassic Yima Group coal measures given by the model are consistent with the in-situ explorations.The geometric characteristics of the fault profile obtained by numerical calculation can better reflect the shape of F16 in its forming stage,and the mechanical genesis of the large-scale reverse thrust sheet also concurred with the field situations.Thus,this work can provide a foundation for further studies on the genesis of the thrust nappe structure,the mechanism of rock bursts induced by F16,and the characteristics of the residual stress field in the Yima mining area.展开更多
A simplified model of the thrust force is proposed based on a caudal fin oscillation of an underwater bionic robot. The caudal fin oscillation is generalized by cen- tral pattern generators (CPGs). In this model, th...A simplified model of the thrust force is proposed based on a caudal fin oscillation of an underwater bionic robot. The caudal fin oscillation is generalized by cen- tral pattern generators (CPGs). In this model, the drag coefficient and lift coefficient are the two critical parameters which are obtained by the digital particle image velocimetry (DPIV) and the force transducer experiment. Numerical simulation and physical experi- ments have been performed to verify this dynamic model.展开更多
This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The pro...This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The proposed analytical method was developed based on 36 experiments,which involved three coating types(cement mortar(CM),polyurethane type-I(PT-I),prefabricated plastic tape(PPT))on pipes’surfaces,three different soils(pea-gravel(PG),sand(S),silty-clay(SC)),and four simulated over burden depths above the pipe’s crown.Investigation showed frictional resistance decreased with increasing over burden depth above the pipe’s crown.The degree of frictional resistance at the pipe-soil interface was found to be in the order of PG>SC>S for all coating variations and overburden depths.CM coated pipe buried in all three types of soil produced significantly higher frictional resistance as compared to other coating types.Based on experimental data,the developed analytical introduced a dimensionless factor“Z”,which included effects of types of coatings,soil,and overburden depths for simplified rapid calculation.Analysis showed that the method provided a better prediction of frictional resistance forces,in comparison to previous analytical methods,which were barely close in predicting friction resistance for different coating variations,soil types,and overburden depths.Friction resistance force values reported herein could be considered conservative.展开更多
A two-way adaptive Kalman filter is proposed by combining a two-way filter with an adaptive filter for orbit determination of a maneuvered GEO satellite.A method of using Newton's high-resolution differential form...A two-way adaptive Kalman filter is proposed by combining a two-way filter with an adaptive filter for orbit determination of a maneuvered GEO satellite.A method of using Newton's high-resolution differential formula and polynomial fitting for modeling the thrust force of a maneuvered GEO satellite is developed.The adaptive factor,which balances the contributions of the measurements and the dynamic model information,is determined by using a two-segment function and predicted residual statistics.Simulations with a maneuvered GEO satellite tracked by the Chinese ground tracking network were conducted to verify the performance of the proposed orbit determination technique and the method of thrust force modeling.The results show that refining the thrust force model is beneficial for the orbit determination of a maneuvered GEO satellite;the two-way adaptive Kalman filter can efficiently control the influence of the dynamic model errors on the orbit state estimate.展开更多
基金the financial support of Aeronautical Science Foundations of China(No.2013ZE52067,No.2014ZE52057)
文摘Exit delamination is excessive drilling thrust force.Therefore,it is necessary to investigate the critical thrust force which cause exit delamination when carbon fibre reinforced plastics(CRFP)is drilled.According to the linear elastic fracture mechanics,the mechanics of composite material and the classical thin plate bending theory,a common theoretical model of the critical drilling thrust force for CFRP plates is established.Compared with the experimental data of previous studies,the results show that the theoretical values agree well with the experimental values.This model can be used to forecast the critical thrust force for the drilling-induced delamination of CFRP.
文摘Drilling is indispensable process and it cannot be avoided for joining composite structures used in various engineering applications. In this research article, the influence of drilling parameters on thrust force and torque of silica (SiO2) and alumina (Al2O3) filled into glass fabric reinforced epoxy (G-E) composites are analyzed. Drilling experiments are conducted on these composite materials using BATLIBOI make radial drilling machine. Two different drill bits (HSS and cemented carbide) are used for the experimentation. The influence of drilling parameters like cutting speed and feed on thrust force and torque on drilling of particulate filled G-E composites has been carried out. The experimental results indicated that the thrust force and torque were increased with increasing feed and cutting speed for all the composites tested. Further, it is observed that the carbide drill performed better than HSS drill during drilling of particulate filled G-E composites. The drilled surfaces are examined using scanning electron microscopy (SEM) and damage mechanisms are discussed.
基金Work supported by the Second Stage of Brain Korea 21 Projects
文摘An optimal configuration of the flux-reversal linear synchronous motor (FRLSM) with the optimal number of attachment permanent magnets (PMs) was presented. The optimal model of 2 000 N was designed to reduce the detent force by redesigning the air-gap structure and skewing. The design parameters,mover PMs and stator core,were selected for optimal design by DOE. The thrust and the detent force of the designed optimal models were compared by finite element analysis (FEA). As a result,the thrust of the optimal model is slightly decreased by 1.97% compared with the basic model,and the detent force of the optimal model is greatly decreased by 88.47% compared with the basic model.
基金supported in part by the National Natural Science Foundation of China under Grant 51507813。
文摘For a new type of toroidal permanent magnet linear motor(TPMLSM), this paper analyzes the thrust fluctuation in the constant acceleration operation of the motor from the Angle of the cogging force of the linear motor. For the motor whose structure has been determined and processed, the structural parameters of the motor cannot be changed, and its performance cannot be improved from the perspective of the motor body.Therefore, this paper tries to consider the influence of the cogging force on the normal operation of the motor from the perspective of control. In this paper, starting from the body structure of motor, first on the annular linear motor of the cogging force characteristics were extracted, and its expression is obtained by Fourier decomposition, then investigated considering the cogging force and does not consider the cogging force control of motor model, it can be seen that the control performance deteriorates significantly after considering cogging force of the motor, and the acceleration fluctuation increases significantly during the operation of the motor. On this basis, disturbance observation algorithm is introduced, and feedforward compensation is carried out by extracting the characteristic values of the disturbance model. The results show that the disturbance observer can suppress the thrust fluctuation caused by the motor cogging force to a large extent, and it can reduce the peak-to-peak value of the thrust fluctuation by more than 85% during the motor acceleration operation.
基金Project(2010CB226805) supported by the National Basic Research Program of ChinaProject(CXLX13-949) supported by the Research and Innovation Project for College Graduates of Jiangsu Province,China+1 种基金Project(51174285) supported by the National Natural Science Foundation of ChinaProject(SZBF2011-6-B35) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe structure was studied comprehensively using geomechanics,fault mechanics,elastic mechanics,and Coulomb's law of friction.First,using the centrifugal inertia force of Earth's rotation as a source,a mechanical model of N-S compression superimposed with W-E reverse torsion was established to explain the formation of the early Yima coal basin and Jurassic Yima Group coal measures.Second,an equation for the ultimate stress in the forming stage of F16 was derived using the plastic slip-line field theory and the parabolic Mohr failure criterion.Moreover,the distribution of ultimate stress and the geometric characteristics of the fault profile were obtained using the field model parameters.Finally,the stress field of F16 and the mechanical genesis of the large-scale reverse thrust sheet were discussed based on elastic mechanics theory and Coulomb's law of friction.The results show that the tectonic framework of the early Yima coal basin and the formation pattern of Jurassic Yima Group coal measures given by the model are consistent with the in-situ explorations.The geometric characteristics of the fault profile obtained by numerical calculation can better reflect the shape of F16 in its forming stage,and the mechanical genesis of the large-scale reverse thrust sheet also concurred with the field situations.Thus,this work can provide a foundation for further studies on the genesis of the thrust nappe structure,the mechanism of rock bursts induced by F16,and the characteristics of the residual stress field in the Yima mining area.
基金Project supported by the National Natural Science Foundation of China(Nos.61503008 and 51575005)the China Postdoctoral Science Foundation(No.2015M570013)
文摘A simplified model of the thrust force is proposed based on a caudal fin oscillation of an underwater bionic robot. The caudal fin oscillation is generalized by cen- tral pattern generators (CPGs). In this model, the drag coefficient and lift coefficient are the two critical parameters which are obtained by the digital particle image velocimetry (DPIV) and the force transducer experiment. Numerical simulation and physical experi- ments have been performed to verify this dynamic model.
文摘This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The proposed analytical method was developed based on 36 experiments,which involved three coating types(cement mortar(CM),polyurethane type-I(PT-I),prefabricated plastic tape(PPT))on pipes’surfaces,three different soils(pea-gravel(PG),sand(S),silty-clay(SC)),and four simulated over burden depths above the pipe’s crown.Investigation showed frictional resistance decreased with increasing over burden depth above the pipe’s crown.The degree of frictional resistance at the pipe-soil interface was found to be in the order of PG>SC>S for all coating variations and overburden depths.CM coated pipe buried in all three types of soil produced significantly higher frictional resistance as compared to other coating types.Based on experimental data,the developed analytical introduced a dimensionless factor“Z”,which included effects of types of coatings,soil,and overburden depths for simplified rapid calculation.Analysis showed that the method provided a better prediction of frictional resistance forces,in comparison to previous analytical methods,which were barely close in predicting friction resistance for different coating variations,soil types,and overburden depths.Friction resistance force values reported herein could be considered conservative.
基金supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 2007B51)National Natural Science Foundation of China (Grant Nos. 41174008 and 41020144004)China Postdoctoral Science Foundation (Grant Nos. 20080430148 and200902444)
文摘A two-way adaptive Kalman filter is proposed by combining a two-way filter with an adaptive filter for orbit determination of a maneuvered GEO satellite.A method of using Newton's high-resolution differential formula and polynomial fitting for modeling the thrust force of a maneuvered GEO satellite is developed.The adaptive factor,which balances the contributions of the measurements and the dynamic model information,is determined by using a two-segment function and predicted residual statistics.Simulations with a maneuvered GEO satellite tracked by the Chinese ground tracking network were conducted to verify the performance of the proposed orbit determination technique and the method of thrust force modeling.The results show that refining the thrust force model is beneficial for the orbit determination of a maneuvered GEO satellite;the two-way adaptive Kalman filter can efficiently control the influence of the dynamic model errors on the orbit state estimate.