[Objective] The research aimed to assess the effect of transgenic Bt plus CpTI cotton variety SGK321 on carboxylesterase and acetylcholinesterase of cotton aphid Aphis gossypii and provide theoretical basis for studyi...[Objective] The research aimed to assess the effect of transgenic Bt plus CpTI cotton variety SGK321 on carboxylesterase and acetylcholinesterase of cotton aphid Aphis gossypii and provide theoretical basis for studying the biosafety of transgenic cotton.[Method] Cotton aphids were fed with SGK321 and Shiyuan321(normal parental varieties) for over 40 generations.Enzyme activities were compared between cotton aphids feeding on SGK321 for 1,2,3,41,42 and 43 generations with those on Shiyuan321.[Result] The carboxylesterase activity of cotton aphids feeding on SGK321 for 1 generation was significantly higher than those feeding on Shiyuan321.Acetylcholinesterase activity of cotton aphids feeding on SGK321 for 1,2 and 3 generations were significantly higher than those feeding on Shiyuan321 in the same generation.But there was no significant difference of enzyme activity between cotton aphids feeding on SGK321 for a long term and those feeding on parental cotton.[Conclusion] The cotton aphid that feeding on transgenic Bt plus CpTI cotton SGK321 for a long time has adaptivity to SGK321 by regulating the detoxifying enzyme.展开更多
This study was mainly made on the role of energy revisers in cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) countered with imidacloprid and thiametoxam. We measured used energy, available energy and the...This study was mainly made on the role of energy revisers in cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) countered with imidacloprid and thiametoxam. We measured used energy, available energy and the content of total energy in three strains of cotton aphid which were from very resistant to neonicotinoid, sup to semi-sensitive and sensitive speccies, respectively. It was observed changes in energy resources rate in all of the aphid strains at which each substrate was metabolized under stress. Our findings indicated among energy sources, total lipid in susceptible strain was increased in counter of spraying and it was decreased in resistance and semi sensitive strains. Whereas, total protein was decreased in all of the strains encountering with neonicotiniod stress. Total glycogen was increased significantly in different aphid strains and sugar was decreased in countered of spraying.展开更多
Aphids are considered as one of the key pests for wheat production worldwide. Major aphid species that infest wheat in China include Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum and Metopolophium dirhodum....Aphids are considered as one of the key pests for wheat production worldwide. Major aphid species that infest wheat in China include Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum and Metopolophium dirhodum. However, during our wheat field survey in Wenshang County of Shangdong'Province, China, we observed that Aphis gossypii can feed on wheat. The damage risk of A. gossypii on wheat was assessed using host shift method. A population of A. gossypii collected from a wheat field in 2015 and another population reared on cotton under laboratory conditions for a decade without exposure to insecticides were used in the study. The results of host shift demonstrated that the A. gossypfi colony from wheat has not yet developed wheat specialization. Moreover, the assessment of A. gossypii fitness on wheat and cotton showed that fecundity and net reproductive rate of A. gossypii population fed on wheat was significantly higher comparing to the population fed on cotton, whether the initial host of A. gossypii population was wheat or cotton. This study raises a warning that the cotton aphid has potential to establish well on wheat and it may cause significant effects under specific circumstances. Therefore, future studies are required to evaluate the effects of A. gossypfi on wheat production.展开更多
Carmine spider mites (Tetranychus cinnabarinus) and cotton aphids (Aphis gossypii) are both serious pests of cotton, and cause reductions in yields of this key agricultural crop. In order to gain insights into how...Carmine spider mites (Tetranychus cinnabarinus) and cotton aphids (Aphis gossypii) are both serious pests of cotton, and cause reductions in yields of this key agricultural crop. In order to gain insights into how plant defense responses induced by one herbivore species affect the behavior and performance of another, we examined how infestation with T. cinnabarinus influences the development of A. gossypfi using cotton as a model. In this study, we measured the activities of several important biochemical markers and secondary metabolites in the leaves of cotton seedlings responding to infestation by T. cinnabarinus. Furthermore, the influences of T. cinnabarinus infestation on the development ofA. gossypfi in cotton were also examined. Our data showed that the activities of several key defense enzymes, including phenylalanine ammonia-lyase (PAL), peroxidase (POD), lipoxygenase (LOX), and polyphenol oxidase (PPO), were substantially increased in cotton seedlings responding to spider mite infestation. Further, the contents of gossypol and condensed tannins, key defensive compounds, were significantly enhanced in leaves of cotton seedlings following T. cinnabarinus infestation. Moreover, the T. cinnabarinus-induced production of defense enzymes and secondary metabolites was correlated with infestation density. The developmental periods of A. gossypii on cotton seedling leaves infested with T. cinnabarinus at densities of 10 and 15 individuals cm-2 were 1.16 and 1.18 times that of control, respectively. Meanwhile, the mean relative growth rates of A. gossypfi on cotton leaves infested with T. cinnabarinus at densities of 8, 10 and 15 individuals cm-2 were significantly reduced. Therefore, these data suggested that the developmental periods of A. gossypfi were significantly lengthened and the mean relative growth rates were markedly reduced when cotton aphids were reared on plants infested with high densities of spider mites. This research sheds light on the role that inducible defense responses played in plant-mediated interspecific interactions between T. cinnabarinus and A. gossypfi.展开更多
基金Supported by Major Program for New Transgenic Plant VarietiesBreeding (2008ZX08012-04)~~
文摘[Objective] The research aimed to assess the effect of transgenic Bt plus CpTI cotton variety SGK321 on carboxylesterase and acetylcholinesterase of cotton aphid Aphis gossypii and provide theoretical basis for studying the biosafety of transgenic cotton.[Method] Cotton aphids were fed with SGK321 and Shiyuan321(normal parental varieties) for over 40 generations.Enzyme activities were compared between cotton aphids feeding on SGK321 for 1,2,3,41,42 and 43 generations with those on Shiyuan321.[Result] The carboxylesterase activity of cotton aphids feeding on SGK321 for 1 generation was significantly higher than those feeding on Shiyuan321.Acetylcholinesterase activity of cotton aphids feeding on SGK321 for 1,2 and 3 generations were significantly higher than those feeding on Shiyuan321 in the same generation.But there was no significant difference of enzyme activity between cotton aphids feeding on SGK321 for a long term and those feeding on parental cotton.[Conclusion] The cotton aphid that feeding on transgenic Bt plus CpTI cotton SGK321 for a long time has adaptivity to SGK321 by regulating the detoxifying enzyme.
文摘This study was mainly made on the role of energy revisers in cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) countered with imidacloprid and thiametoxam. We measured used energy, available energy and the content of total energy in three strains of cotton aphid which were from very resistant to neonicotinoid, sup to semi-sensitive and sensitive speccies, respectively. It was observed changes in energy resources rate in all of the aphid strains at which each substrate was metabolized under stress. Our findings indicated among energy sources, total lipid in susceptible strain was increased in counter of spraying and it was decreased in resistance and semi sensitive strains. Whereas, total protein was decreased in all of the strains encountering with neonicotiniod stress. Total glycogen was increased significantly in different aphid strains and sugar was decreased in countered of spraying.
基金supported by the Highland Barley Research System of China
文摘Aphids are considered as one of the key pests for wheat production worldwide. Major aphid species that infest wheat in China include Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum and Metopolophium dirhodum. However, during our wheat field survey in Wenshang County of Shangdong'Province, China, we observed that Aphis gossypii can feed on wheat. The damage risk of A. gossypii on wheat was assessed using host shift method. A population of A. gossypii collected from a wheat field in 2015 and another population reared on cotton under laboratory conditions for a decade without exposure to insecticides were used in the study. The results of host shift demonstrated that the A. gossypfi colony from wheat has not yet developed wheat specialization. Moreover, the assessment of A. gossypii fitness on wheat and cotton showed that fecundity and net reproductive rate of A. gossypii population fed on wheat was significantly higher comparing to the population fed on cotton, whether the initial host of A. gossypii population was wheat or cotton. This study raises a warning that the cotton aphid has potential to establish well on wheat and it may cause significant effects under specific circumstances. Therefore, future studies are required to evaluate the effects of A. gossypfi on wheat production.
基金supported by the National Natural Science Foundation of China (31672045)
文摘Carmine spider mites (Tetranychus cinnabarinus) and cotton aphids (Aphis gossypii) are both serious pests of cotton, and cause reductions in yields of this key agricultural crop. In order to gain insights into how plant defense responses induced by one herbivore species affect the behavior and performance of another, we examined how infestation with T. cinnabarinus influences the development of A. gossypfi using cotton as a model. In this study, we measured the activities of several important biochemical markers and secondary metabolites in the leaves of cotton seedlings responding to infestation by T. cinnabarinus. Furthermore, the influences of T. cinnabarinus infestation on the development ofA. gossypfi in cotton were also examined. Our data showed that the activities of several key defense enzymes, including phenylalanine ammonia-lyase (PAL), peroxidase (POD), lipoxygenase (LOX), and polyphenol oxidase (PPO), were substantially increased in cotton seedlings responding to spider mite infestation. Further, the contents of gossypol and condensed tannins, key defensive compounds, were significantly enhanced in leaves of cotton seedlings following T. cinnabarinus infestation. Moreover, the T. cinnabarinus-induced production of defense enzymes and secondary metabolites was correlated with infestation density. The developmental periods of A. gossypii on cotton seedling leaves infested with T. cinnabarinus at densities of 10 and 15 individuals cm-2 were 1.16 and 1.18 times that of control, respectively. Meanwhile, the mean relative growth rates of A. gossypfi on cotton leaves infested with T. cinnabarinus at densities of 8, 10 and 15 individuals cm-2 were significantly reduced. Therefore, these data suggested that the developmental periods of A. gossypfi were significantly lengthened and the mean relative growth rates were markedly reduced when cotton aphids were reared on plants infested with high densities of spider mites. This research sheds light on the role that inducible defense responses played in plant-mediated interspecific interactions between T. cinnabarinus and A. gossypfi.