Iminodiacetic acid resin-chelated copper(Ⅱ) complex is effective in cross-coupling reactions between azaheterocycles and aryl or heteroaryl halides,providing N-arylated products in good to excellent yields.The copper...Iminodiacetic acid resin-chelated copper(Ⅱ) complex is effective in cross-coupling reactions between azaheterocycles and aryl or heteroaryl halides,providing N-arylated products in good to excellent yields.The copper catalyst is air stable and can be readily recovered and reused with minimal loss of activity for three runs.展开更多
In(Ⅲ) was quantitatively adsorbed by iminodiacetic acid resin (IDAAR) in the medium of pH = 4.52. The statically saturated sorption capacity of IDAAR is 235.5 mg·g^-1. 1.0 mol·L^-1 HCl can be used as an...In(Ⅲ) was quantitatively adsorbed by iminodiacetic acid resin (IDAAR) in the medium of pH = 4.52. The statically saturated sorption capacity of IDAAR is 235.5 mg·g^-1. 1.0 mol·L^-1 HCl can be used as an eluant. The elution efficiency is 97.9%. The resin can be regenerated and reused without apparent decrease of sorption capacity. The sorption rate constant is k298 = 1.94 × 10-5 s^-1. The apparent sorption activation energy of IDAAR for In(Ⅲ) is 20.1 kJ·mol^-1. The sorption behavior of IDAAR for In(HI) obeys the Freundlich isotherm. The enthalpy change is AH= 17.2 kJ·mol^-1.展开更多
Several kinds of novel chelating resins bearing the functional group of tartaric acid (TTA-FQ-12, TTA-FQ-23, and TTA-FQ-34) were synthesized by reacting epoxy maleic anhydride, which was prepared through the oxidizati...Several kinds of novel chelating resins bearing the functional group of tartaric acid (TTA-FQ-12, TTA-FQ-23, and TTA-FQ-34) were synthesized by reacting epoxy maleic anhydride, which was prepared through the oxidization reaction of maleic anhydride by hydrogen peroxide, with phenol-formaldehyde resin containing polyamine (FQ resins series). The effects of such factors as reaction time, reaction temperature and pH value on the loading capacity of TTA in resins were investigated. The results showed that the optimum reaction conditions are as follows: time 9-12 h; temperature 90-105'C; pH value 6-10. The loading capacities of TTA can reach 0.15, 0.14, and 0.11 mmol/g-1 when the functional group of FQ resin was - OCH2CH2NHC2H4NH2, - O(CH2CH2NH)2C2H4NH2 and - O(CH2CH2NH)3C2H4NH2), respectively. The structures of resins were characterized by FTIR spectra. The primary study on the adsorption properties of the resins for metal ions showed that there are two kinds of adsorption mechanisms i.e. ion exchange and chelate in the adsorption process. TTA-FQ resins have much higher adsorption selectivity for Pb2+and Zn2+ than for Cu2+ and Ni2+. These resins can probably be used for separating Pb2+ or Zn2+ in the mixture of metal ions or for treating wastewater containing heavy metal ions.展开更多
The adsorption behavior and mechanism of a novel chelate resin, iminodiacetic acid resin (IDAAR) for Lu(Ⅲ) were investigated. The statically saturated adsorption capacity is 210.8 mg·g^(-1) at 298 K in HAc-NaAc ...The adsorption behavior and mechanism of a novel chelate resin, iminodiacetic acid resin (IDAAR) for Lu(Ⅲ) were investigated. The statically saturated adsorption capacity is 210.8 mg·g^(-1) at 298 K in HAc-NaAc medium. The Lu(Ⅲ) adsorbed on IDAAR can be eluted by 0.5 mol·L^(-1) HCl and the elution percentage reaches 96.5%. The resin can be regenerated and reused without obvious decrease in adsorption capacity. The apparent adsorption rate constant is k_(298)=2.0×10^(-5) s^(-1). The adsorption behavior of IDAAR for Lu(Ⅲ) obeys the Freundlich isotherm. The thermodynamic adsorption parameters, enthalpy change ΔH, free energy change ΔG and entropy change ΔS of IDAAR for Lu(Ⅲ) are 13.1 kJ·mol^(-1), -1.37 kJ·mol^(-1) and 48.4 J·mol^(-1)·K^(-1), respectively. The apparent activation energy is E_a=31.3 kJ·mol^(-1). The molar coordination ratio of the functional group of IDAAR to Lu(Ⅲ) is about 3∶1. The adsorption mechanism of IDAAR for Lu(Ⅲ) was examined by chemical method and IR spectrometry.展开更多
PS-PAMAM-IDA chelating resins were prepared by low-generations of polyamidoamine(PAMAM) and then chloroacetic acid functionalizing commercially available ammoniated polystyrene matrix, to preconcentrate Ni2+ from synt...PS-PAMAM-IDA chelating resins were prepared by low-generations of polyamidoamine(PAMAM) and then chloroacetic acid functionalizing commercially available ammoniated polystyrene matrix, to preconcentrate Ni2+ from synthetic aqueous samples. Different generations of PAMAM were used to obtain different chelating resins, PS-IDA, PS-1.0G PAMAM-IDA and PS-2.0G PAMAM-IDA. The synthesized resins were characterized by FTIR and elemental analysis. The effect of solution pH, kinetic studies, resin loading capacity, matrix effects etc., on metal ion adsorption to adsorbent phase, were studied by batch method. The PS-1.0G PAMAM-IDA resin was the most excellent adsorbents, with a maximum adsorption capacity of(24.09±1.79) mg/g for Ni2+ ion at pH=7. The interpretation of the equilibrium data was given by Langmuir isotherms model, and the correlation coefficient values for PS-IDA, PS-1.0G PAMAM-IDA and PS-2.0G PAMAM-IDA resins were 0.992, 0.994 and 0.987, respectively.展开更多
A novel chelating resin OABA,capable of removing Cu(Ⅱ) from aqueous solution,was synthesized via the reaction of macroporous chloromethylated PS-DVB copolymer beads with orotic acid.The elemental analysis(EA),Fou...A novel chelating resin OABA,capable of removing Cu(Ⅱ) from aqueous solution,was synthesized via the reaction of macroporous chloromethylated PS-DVB copolymer beads with orotic acid.The elemental analysis(EA),Fourier transform infrared spectroscopy(FT-IR),and scanning electron microscopy microscope-energy dispersive X-ray spectroscopy(SEM-EDS) were used in the characterization of the synthesized chelating resin.Multiple,static batch adsorption experiments were conducted at different initial concentrations and temperatures.OABA showed good adsorption capacity for Cu(Ⅱ) and the equilibrium data could be well matched with the Freundlich isotherm model.Coexisting sodium chloride and calcium chloride in solutions favored the Cu(Ⅱ) adsorption.Moreover,the desorption process of Cu(Ⅱ) was tested and over 90%regeneration efficiency for the spent OABA was achieved at ammonia concentrations ranging from 1.0%to 2.0%.The results suggested that OABA would be a potential alternative adsorbent for Cu(Ⅱ),even with other heavy metal ion treatments of wastewater.展开更多
A blending chelate filter membrane with high chelate capacity for Ag + has been prepared by blending of phosphoramidic acid resin and polysulfone. The major parameters influencing structure of the chelate filter membr...A blending chelate filter membrane with high chelate capacity for Ag + has been prepared by blending of phosphoramidic acid resin and polysulfone. The major parameters influencing structure of the chelate filter membranes such as the blending ratio, phosphoramidic acid resin grain size and temperature of casting solution have been studied. The relationship among the chelate amount of Ag +, pH value, Ag + concentration and phosphoramidic acid resin grain diameter were examined. The chelate filter membrane had a capacity of 1 438 μg/cm 2 for Ag + under appropriate conditions. Sorption isotherm of Ag + could be expressed with the Freundlich sorption model. The dynamic chelate experiments proved that the sorption and desorption of membranes could be realized simultaneously for Ag +.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province(No.Y407240).
文摘Iminodiacetic acid resin-chelated copper(Ⅱ) complex is effective in cross-coupling reactions between azaheterocycles and aryl or heteroaryl halides,providing N-arylated products in good to excellent yields.The copper catalyst is air stable and can be readily recovered and reused with minimal loss of activity for three runs.
文摘In(Ⅲ) was quantitatively adsorbed by iminodiacetic acid resin (IDAAR) in the medium of pH = 4.52. The statically saturated sorption capacity of IDAAR is 235.5 mg·g^-1. 1.0 mol·L^-1 HCl can be used as an eluant. The elution efficiency is 97.9%. The resin can be regenerated and reused without apparent decrease of sorption capacity. The sorption rate constant is k298 = 1.94 × 10-5 s^-1. The apparent sorption activation energy of IDAAR for In(Ⅲ) is 20.1 kJ·mol^-1. The sorption behavior of IDAAR for In(HI) obeys the Freundlich isotherm. The enthalpy change is AH= 17.2 kJ·mol^-1.
基金This work was supported by the Postdoctoral Science Foundation of China (No. 2003034330), the Science Foundation forElite of Middle Age and Youth of Shandong Province, the Natural Science Foundation of Shandong Province (No. Q99B15)and the National Natural Science Foundation of China (No. 29906008).
文摘Several kinds of novel chelating resins bearing the functional group of tartaric acid (TTA-FQ-12, TTA-FQ-23, and TTA-FQ-34) were synthesized by reacting epoxy maleic anhydride, which was prepared through the oxidization reaction of maleic anhydride by hydrogen peroxide, with phenol-formaldehyde resin containing polyamine (FQ resins series). The effects of such factors as reaction time, reaction temperature and pH value on the loading capacity of TTA in resins were investigated. The results showed that the optimum reaction conditions are as follows: time 9-12 h; temperature 90-105'C; pH value 6-10. The loading capacities of TTA can reach 0.15, 0.14, and 0.11 mmol/g-1 when the functional group of FQ resin was - OCH2CH2NHC2H4NH2, - O(CH2CH2NH)2C2H4NH2 and - O(CH2CH2NH)3C2H4NH2), respectively. The structures of resins were characterized by FTIR spectra. The primary study on the adsorption properties of the resins for metal ions showed that there are two kinds of adsorption mechanisms i.e. ion exchange and chelate in the adsorption process. TTA-FQ resins have much higher adsorption selectivity for Pb2+and Zn2+ than for Cu2+ and Ni2+. These resins can probably be used for separating Pb2+ or Zn2+ in the mixture of metal ions or for treating wastewater containing heavy metal ions.
文摘The adsorption behavior and mechanism of a novel chelate resin, iminodiacetic acid resin (IDAAR) for Lu(Ⅲ) were investigated. The statically saturated adsorption capacity is 210.8 mg·g^(-1) at 298 K in HAc-NaAc medium. The Lu(Ⅲ) adsorbed on IDAAR can be eluted by 0.5 mol·L^(-1) HCl and the elution percentage reaches 96.5%. The resin can be regenerated and reused without obvious decrease in adsorption capacity. The apparent adsorption rate constant is k_(298)=2.0×10^(-5) s^(-1). The adsorption behavior of IDAAR for Lu(Ⅲ) obeys the Freundlich isotherm. The thermodynamic adsorption parameters, enthalpy change ΔH, free energy change ΔG and entropy change ΔS of IDAAR for Lu(Ⅲ) are 13.1 kJ·mol^(-1), -1.37 kJ·mol^(-1) and 48.4 J·mol^(-1)·K^(-1), respectively. The apparent activation energy is E_a=31.3 kJ·mol^(-1). The molar coordination ratio of the functional group of IDAAR to Lu(Ⅲ) is about 3∶1. The adsorption mechanism of IDAAR for Lu(Ⅲ) was examined by chemical method and IR spectrometry.
基金Project(51074192)supported by the National Natural Science Foundation of China
文摘PS-PAMAM-IDA chelating resins were prepared by low-generations of polyamidoamine(PAMAM) and then chloroacetic acid functionalizing commercially available ammoniated polystyrene matrix, to preconcentrate Ni2+ from synthetic aqueous samples. Different generations of PAMAM were used to obtain different chelating resins, PS-IDA, PS-1.0G PAMAM-IDA and PS-2.0G PAMAM-IDA. The synthesized resins were characterized by FTIR and elemental analysis. The effect of solution pH, kinetic studies, resin loading capacity, matrix effects etc., on metal ion adsorption to adsorbent phase, were studied by batch method. The PS-1.0G PAMAM-IDA resin was the most excellent adsorbents, with a maximum adsorption capacity of(24.09±1.79) mg/g for Ni2+ ion at pH=7. The interpretation of the equilibrium data was given by Langmuir isotherms model, and the correlation coefficient values for PS-IDA, PS-1.0G PAMAM-IDA and PS-2.0G PAMAM-IDA resins were 0.992, 0.994 and 0.987, respectively.
基金the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A novel chelating resin OABA,capable of removing Cu(Ⅱ) from aqueous solution,was synthesized via the reaction of macroporous chloromethylated PS-DVB copolymer beads with orotic acid.The elemental analysis(EA),Fourier transform infrared spectroscopy(FT-IR),and scanning electron microscopy microscope-energy dispersive X-ray spectroscopy(SEM-EDS) were used in the characterization of the synthesized chelating resin.Multiple,static batch adsorption experiments were conducted at different initial concentrations and temperatures.OABA showed good adsorption capacity for Cu(Ⅱ) and the equilibrium data could be well matched with the Freundlich isotherm model.Coexisting sodium chloride and calcium chloride in solutions favored the Cu(Ⅱ) adsorption.Moreover,the desorption process of Cu(Ⅱ) was tested and over 90%regeneration efficiency for the spent OABA was achieved at ammonia concentrations ranging from 1.0%to 2.0%.The results suggested that OABA would be a potential alternative adsorbent for Cu(Ⅱ),even with other heavy metal ion treatments of wastewater.
文摘A blending chelate filter membrane with high chelate capacity for Ag + has been prepared by blending of phosphoramidic acid resin and polysulfone. The major parameters influencing structure of the chelate filter membranes such as the blending ratio, phosphoramidic acid resin grain size and temperature of casting solution have been studied. The relationship among the chelate amount of Ag +, pH value, Ag + concentration and phosphoramidic acid resin grain diameter were examined. The chelate filter membrane had a capacity of 1 438 μg/cm 2 for Ag + under appropriate conditions. Sorption isotherm of Ag + could be expressed with the Freundlich sorption model. The dynamic chelate experiments proved that the sorption and desorption of membranes could be realized simultaneously for Ag +.