In the situation of inadequate vaccines and rapid mutation of virulent strains, alternative health interventions play a crucial role in the containment of emerging epidemics. This study elucidates the critical aspects...In the situation of inadequate vaccines and rapid mutation of virulent strains, alternative health interventions play a crucial role in the containment of emerging epidemics. This study elucidates the critical aspects of health interventions to control epidemic resurgence. Besides, human behavioral response to epidemics plays an instrumental role in bringing the success of control efforts. The appearance of multi-strain epidemics has become a global health concern that requires special attention. Here, we introduce a novel mean-field epidemic game approach to predict the evolutionary dynamics of flu-like epidemics having multiple disease strains. Our model illustrates the importance of multiple provisions alongside their timely execution for better disease attenuation. In addition to vaccination, we introduce self-protection as a potential alternative that yields safeguard against either strain. Both these imperfect provisions render better efficacy against primary (resident) strain than secondary (mutant) to contain epidemic transmission. The simulation-backed model analysis further sheds some light on the crucial impacts of control interventions to limit the invasion of virulent strains from qualitative and quantitative viewpoints. It explicates how vaccination and self-protection complement each other as per situation demands. Our full-fledged theoretical approach further illustrates the dynamic trade-off between the cost and efficacy of a certain intervention. We confirm that the disease dies out when the basic reproduction number of individual strains is less than one and becomes endemic if it is greater than one. Finally, the model addresses the evolutionary consequences when mutation takes place from primary to secondary strain. Some impressive facts while employing dual provisions have been reinforced using a game-theoretic framework.展开更多
文摘In the situation of inadequate vaccines and rapid mutation of virulent strains, alternative health interventions play a crucial role in the containment of emerging epidemics. This study elucidates the critical aspects of health interventions to control epidemic resurgence. Besides, human behavioral response to epidemics plays an instrumental role in bringing the success of control efforts. The appearance of multi-strain epidemics has become a global health concern that requires special attention. Here, we introduce a novel mean-field epidemic game approach to predict the evolutionary dynamics of flu-like epidemics having multiple disease strains. Our model illustrates the importance of multiple provisions alongside their timely execution for better disease attenuation. In addition to vaccination, we introduce self-protection as a potential alternative that yields safeguard against either strain. Both these imperfect provisions render better efficacy against primary (resident) strain than secondary (mutant) to contain epidemic transmission. The simulation-backed model analysis further sheds some light on the crucial impacts of control interventions to limit the invasion of virulent strains from qualitative and quantitative viewpoints. It explicates how vaccination and self-protection complement each other as per situation demands. Our full-fledged theoretical approach further illustrates the dynamic trade-off between the cost and efficacy of a certain intervention. We confirm that the disease dies out when the basic reproduction number of individual strains is less than one and becomes endemic if it is greater than one. Finally, the model addresses the evolutionary consequences when mutation takes place from primary to secondary strain. Some impressive facts while employing dual provisions have been reinforced using a game-theoretic framework.