This paper studies the dispersion effect of the supersphere solid immersion lens (SIL) on a near field optical microscopy system by using the vector diffraction theory.Results show that when a real non-monochromatic...This paper studies the dispersion effect of the supersphere solid immersion lens (SIL) on a near field optical microscopy system by using the vector diffraction theory.Results show that when a real non-monochromatic beam illuminates a supersphere SIL microscopy,the dispersion effect of the SIL has an important influence on the image quality.As the wavelength bandwidth of the non-monochromatic beam increases,the size of the focused spot increases and its intensity decreases in near-field microscopy systems with a supersphere SIL.展开更多
Broadband super-resolution imaging is important in the optical field.To achieve super-resolution imaging,various lenses from a superlens to a solid immersion lens have been designed and fabricated in recent years.Howe...Broadband super-resolution imaging is important in the optical field.To achieve super-resolution imaging,various lenses from a superlens to a solid immersion lens have been designed and fabricated in recent years.However,the imaging is unsatisfactory due to low work efficiency and narrow band.In this work,we propose a solid immersion square Maxwell's fish-eye lens,which realizes broadband(7-16 GHz)achromatic super-resolution imaging with full width at half-maximum around 0.2λ based on transformation optics at microwave frequencies.In addition,a super-resolution information transmission channel is also designed to realize long-distance multi-source super-resolution information transmission based on the super-resolution lens.With the development of 3D printing technology,the solid immersion Maxwell's fish-eye lens is expected to be fabricated in the high-frequency band.展开更多
基金Project supported by National Natural Science Foundation of China (Grant No 60777005)
文摘This paper studies the dispersion effect of the supersphere solid immersion lens (SIL) on a near field optical microscopy system by using the vector diffraction theory.Results show that when a real non-monochromatic beam illuminates a supersphere SIL microscopy,the dispersion effect of the SIL has an important influence on the image quality.As the wavelength bandwidth of the non-monochromatic beam increases,the size of the focused spot increases and its intensity decreases in near-field microscopy systems with a supersphere SIL.
基金This work was supported by the National Key Research and Development Program of China(No.2020YFA0710100)National Natural Science Foundation of China(Nos.92050102 and 11874311)Fundamental Research Funds for the Central Universities(No.20720200074).
文摘Broadband super-resolution imaging is important in the optical field.To achieve super-resolution imaging,various lenses from a superlens to a solid immersion lens have been designed and fabricated in recent years.However,the imaging is unsatisfactory due to low work efficiency and narrow band.In this work,we propose a solid immersion square Maxwell's fish-eye lens,which realizes broadband(7-16 GHz)achromatic super-resolution imaging with full width at half-maximum around 0.2λ based on transformation optics at microwave frequencies.In addition,a super-resolution information transmission channel is also designed to realize long-distance multi-source super-resolution information transmission based on the super-resolution lens.With the development of 3D printing technology,the solid immersion Maxwell's fish-eye lens is expected to be fabricated in the high-frequency band.