期刊文献+
共找到118篇文章
< 1 2 6 >
每页显示 20 50 100
Mechanical Alloying of Ag-Cu Immiscible Alloy System 被引量:2
1
作者 方芳 何淼 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第1期84-87,共4页
Mechanical alloying has been performed in Ag-Cu immiscible alloy system with five different compositions. X-ray diffraction analysis was carried out to determine the structural characterization of the milled powders. ... Mechanical alloying has been performed in Ag-Cu immiscible alloy system with five different compositions. X-ray diffraction analysis was carried out to determine the structural characterization of the milled powders. Lattice constants of the milled powders were determined and the solubility for Ag in Cu was calculated. The results demonstrated that MA indeed produced a face center cubic (f.c.c.). Cu-based Cu-Ag solid solution and the solid solubility has been extended to x(Ag)=30% for Ag in Cu when the grain size of Cu-based Cu-Ag solid solution is about 10 nm after MA. There is a three-phases co-existence during the process of MA in this alloy system which agrees well with other experimental and theoretical results. Based on the experimental results a formation model was proposed in this paper to understand the formation of Ag-Cu solid solution during MA. 展开更多
关键词 mechanical alloying Ag-Cu immiscible alloy system solid solubility
下载PDF
Calculation of Interaction Parameters from Immiscible Phase Diagram of Alkali Metal or Alkali Earth Metal-Halide System by Means of Subregular Solution Model 被引量:1
2
作者 Zhaochun ZHANG, Deliang CUI, Baibiao HUANG, Xiaoyan QIN and Minhua JIANG (Institute of Crystal Materials, Shandong University, Jinan 250100, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第3期354-356,共3页
In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpr... In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model. 展开更多
关键词 In Calculation of Interaction Parameters from immiscible Phase Diagram of Alkali Metal or Alkali Earth Metal-Halide system by Means of Subregular Solution Model
下载PDF
Pressure/Saturation System for Immiscible Two-Phase Flow: Uniqueness Revisited
3
作者 Koffi B. Fadimba 《Applied Mathematics》 2011年第5期541-550,共10页
We give a sufficient condition for uniqueness for the pressure/saturation system. We establish this condition through analytic arguments, and then construct 'mobilities' (or mobility-like functions) that satis... We give a sufficient condition for uniqueness for the pressure/saturation system. We establish this condition through analytic arguments, and then construct 'mobilities' (or mobility-like functions) that satisfy the new condition (when the parameter is 2). For the constructed 'mobilities', we do graphical experiments that show, empirically, that this condition could be satisfied for other values of . These empirical experiments indicate that the usual smoothness condition on the fractional flow function (and on the total mobility), for uniqueness and convergence, might not be necessary. This condition is also sufficient for the convergence of a family of perturbed problems to the original pressure/saturation problem. 展开更多
关键词 Porous Medium UNIQUENESS of a Solution DEGENERATE Equation immiscible TWO-PHASE Flow REGULARIZATION Phase Mobility.
下载PDF
Wavefield simulation in porous media saturated with two immiscible fluids 被引量:2
4
作者 田迎春 马坚伟 杨慧珠 《Applied Geophysics》 SCIE CSCD 2010年第1期57-65,99,100,共11页
Wavefields in porous media saturated by two immiscible fluids are simulated in this paper.Based on the sealed system theory,the medium model considers both the relative motion between the fluids and the solid skeleton... Wavefields in porous media saturated by two immiscible fluids are simulated in this paper.Based on the sealed system theory,the medium model considers both the relative motion between the fluids and the solid skeleton and the relaxation mechanisms of porosity and saturation(capillary pressure).So it accurately simulates the numerical attenuation property of the wavefields and is much closer to actual earth media in exploration than the equivalent liquid model and the unsaturated porous medium model on the basis of open system theory.The velocity and attenuation for different wave modes in this medium have been discussed in previous literature but studies of the complete wave-field have not been reported.In our work,wave equations with the relaxation mechanisms of capillary pressure and the porosity are derived.Furthermore,the wavefield and its characteristics are studied using the numerical finite element method.The results show that the slow P3-wave in the non-wetting phase can be observed clearly in the seismic band.The relaxation of capillary pressure and the porosity greatly affect the displacement of the non-wetting phase.More specifically,the displacement decreases with increasing relaxation coefficient. 展开更多
关键词 porous medium immiscible fluids capillary pressure finite element method wavefield simulation
下载PDF
Averaged Dynamics of Fluids near the Oscillating Interface in a Hele-Shaw Cell
5
作者 Anastasia Bushueva Olga Vlasova Denis Polezhaev 《Fluid Dynamics & Materials Processing》 EI 2024年第4期847-857,共11页
The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with inte... The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem.We consider miscible(water and glycerol)and immiscible(water and high-viscosity silicone oil PMS-1000)fluids under subsonic oscillations perpendicular to the interface.Observations show that the interface shape depends on the amplitude and frequency of oscillations.The interface is undisturbed only in the absence of oscillations.Under small amplitudes,the interface between water and glycerol widens due to mixing.When the critical amplitude is reached,the interface becomes unstable to the fingering instability:Aqueous fingers penetrate the high-viscosity glycerol and induce intensive mixing of miscible fluids and associated decay of the instability.After the disappearance of the fingers,the interface takes a U-shape in the central part of the cell.A similar effect is observed for immiscible fluids:The oscillating interface tends to bend to the side of a high-viscosity fluid.Again,when the critical amplitude is reached,the fingering instability arises at the convex interface.This paper focuses on the causes of bending of the initially undisturbed interface between miscible or immiscible fluids.For this purpose,we measure the steady flow velocity near the interface and in the bulk of a high-viscosity fluid using Particle Image Velocimetry(PIV). 展开更多
关键词 Hele-Shaw cell OSCILLATIONS steady flow miscible fluids immiscible fluids INTERFACE
下载PDF
Dynamics of Low-Viscosity Liquids Interface in an Unevenly Rotating Vertical Layer
6
作者 Victor Kozlov Vladimir Saidakov Nikolai Kozlov 《Fluid Dynamics & Materials Processing》 EI 2024年第4期693-703,共11页
The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.I... The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.In the absence of modulation of the rotation speed,the interphase boundary has the shape of a short axisymmetric cylinder.A new effect has been discovered,under the influence of rotation speed modulation,the interface takes on a new dynamic equilibrium state.A more viscous liquid covers the end boundaries of the layer in the form of thin films,which have the shape of round spots of almost constant radius;with increasing amplitude of the velocity modulation,the wetting boundary expands.It is found that upon reaching the critical amplitude of oscillations,the film of a viscous liquid loses stability,and the outer edge of the wetting spot collapses and takes on a feathery structure.It is shown that this threshold is caused by the development of the Kelvin-Helmholtz oscillatory instability of the film.The spreading radius of a spot of light viscous liquid and its stability are studied depending on the rotation rate,amplitude,and frequency of rotation speed modulation.The discovered averaged effects are determined by different oscillatory interaction of fluids with the end-walls of the cell,due to different viscosities.The effect of films forming can find application in technological processes to intensify mass transfer at interphase boundaries. 展开更多
关键词 ROTATION OSCILLATIONS immiscible fluids contact line INTERFACE film dynamic equilibrium Nomenclature frot
下载PDF
Magmatic-hydrothermal Evolution and Mineralization Mechanisms of the Wangjiazhuang Cu(-Mo)Deposit in the Zouping Volcanic Basin,Shandong Province,China:Constraints from Fluid Inclusions
7
作者 SHU Lei YANG Renchao +5 位作者 SHEN Kun YANG Deping MAO Guangzhou LI Min LIU Pengrui MA Xiaodong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期679-700,共22页
The Wangjiazhuang Cu(-Mo)deposit,located within the Zouping volcanic basin in western Shandong Province,China,is unique in this area for having an economic value.In order to expound the metallogenetic characteristics ... The Wangjiazhuang Cu(-Mo)deposit,located within the Zouping volcanic basin in western Shandong Province,China,is unique in this area for having an economic value.In order to expound the metallogenetic characteristics of this porphyry-like hydrothermal deposit,a detailed fluid inclusion study has been conducted,employing the techniques of representative sampling,fluid inclusion petrography,microthermometry,Raman spectroscopy,LA-ICP-MS analysis of single fluid inclusions,as well as cathode fluorescence spectrometer analysis of host mineral quartz.The deposit contains mainly two types of orebodies,i.e.veinlet-dissemination-stockwork orebodies in the K-Si alteration zone and pegmatiticquartz sulfide veins above them.In addition,minor breccia ore occurs locally.Four types of fluid inclusions in the deposit and altered quartz monzonite are identified:L-type one-or two-phase aqueous inclusions,V-type vapor-rich inclusions with V/L ratios greater than 50%-90%,D-type multiphase fluid inclusions containing daughter minerals or solids and S-type silicate-bearing fluid inclusions containing mainly muscovite and biotite.Ore petrography and fluid inclusion study has revealed a three-stage mineralization process,driven by magmatic-hydrothermal fluid activity,as follows.Initially,a hydrothermal fluid,separated from the parent magma,infiltrated into the quartz monzonite,resulting in its extensive K-Si alteration,as indicated by silicate-bearing fluid inclusions trapped in altered quartz monzonite.This is followed by the early mineralization,the formation of quartz veinlets and dissemination-stockwork ores.During the main mineralization stage,due to the participation and mixing of meteoric groundwater with magmatic-sourced hydrothermal fluid,the cooling and phase separation caused deposition of metals from the hydrothermal fluids.As a result,the pegmatitic-quartz sulfide-vein ores formed.In the late mineralization stage,decreasing fluid salinity led to the formation of L-type aqueous inclusions and chalcopyrite-sulfosalt ore.Coexistence of V-type and D-type inclusions and their similar homogenization temperatures with different homogenization modes suggest that phase separation or boiling of the ore-forming fluids took place during the early and the main mineralization stages.The formation P-T conditions of S-type inclusions and the early and the main mineralization stages were estimated as ca.156-182 MPa and 450-650℃,350-450℃,18-35 MPa and 280-380℃,8-15 MPa,respectively,based on the microthermometric data of the fluid inclusions formed at the individual stages. 展开更多
关键词 fluid inclusions fluid immiscibility mineralization mechanisms Wangjiazhuang Cu(-Mo)deposit
下载PDF
Origin of the Yueguang gold deposit in Xinhua, Hunan Province, South China: insights from fl uid inclusion and hydrogen–oxygen stable isotope analysis
8
作者 Hongxin Fan Qiang Wang +2 位作者 Yulong Yang Yao Tang Hao Zou 《Acta Geochimica》 EI CAS CSCD 2024年第2期235-254,共20页
The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,w... The Yueguang gold deposit is located in Fengjia,Xinhua County,Hunan Province,South China.It represents a recently discovered small-scale gold deposit situated in the southwestern region of the Jiangnan Orogenic Belt,west of the Baimashan granitic batholith.In order to discern the characteristics of the ore-formingfluids,the underlying mineralization processes,and establish a foundation for the origin of the Yueguang gold depositfluid inclusion micro-thermometry,as well as quartz hydrogen and oxygen isotope analysis,have been carried out on samples obtained from various stages of mineralization.The hydrothermal miner-alization stages within the Yueguang gold deposit can be categorized into three stages:(i)the barren,pre-ore quartz-pyrite stage(Stage Ⅰ),the quartz-pyrite-gold stage(Stage Ⅱ),and the post-ore quartz-carbonate stage(Stage Ⅲ),with the second stage being the main mineralization stage.Thefluid inclusions identified in samples from the main min-eralization stage can predominantly be described with the NaCl–H_(2)O and CO_(2)–NaCl–H_(2)O systems.These inclusions display homogenization temperatures ranging from 158.8 to 334.9℃,and thefluid salinity ranges from 0.3%to 4.0%(wt.%NaCl equiv.).Laser Raman spectroscopy analysis of individual inclusions further reveals the presence of gas-phases such as CO_(2),CH_(4),and N_(2).Isotopic analysis indicatesδ^(18)Ofluid values ranging from 3.95 to 6.7‰ and δDH_(2)O values ranging from-71.9 to-55.7‰.These results indi-cate that the ore-formingfluid of the Yueguang gold deposit belongs to metamorphic hydrothermalfluids of middle-low temperature and low salinity.In the process of ore formation,gold is transported in the form of Au(HS)2-complexes,with gold deposition being driven byfluid immiscibility.Therefore,the Yueguang gold deposit is categorized as an orogenic gold deposit dominated by metamorphic hydrother-malfluid.It may become a new target for gold exploration in the Baimashan region,central Hunan Province. 展开更多
关键词 Hunan province Yueguang gold deposit Fluid inclusions Hydrogen–oxygen isotopes Laser Raman Fluid immiscibility Orogenic gold deposit
下载PDF
Comparison of dendrite and dispersive structure in rapidly solidified Cu-Co immiscible alloy with different heat flow modes 被引量:3
9
作者 李圣 刘峰 杨伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期227-233,共7页
Rapid solidification of Cu-Co immiscible alloy was investigated by glass-fluxing, spray casting and melt-spinning techniques. Both the transition from dendrite to dispersive structure and corresponding scale evolution... Rapid solidification of Cu-Co immiscible alloy was investigated by glass-fluxing, spray casting and melt-spinning techniques. Both the transition from dendrite to dispersive structure and corresponding scale evolution were revealed and further elucidated in terms of the heat flow mode, nucleation and growth processes under different solidification conditions. With the increase of undercooling, columnar dendrite is replaced by dispersive structure due to the immiscible effect. In contrast, equiaxed dendrite forms in spray cast alloy due to multiple nucleation events and becomes thinner for the case of higher cooling rate. Ascribed to the enhanced non-equilibrium effect and insufficient period for collision and coagulation processes between separated droplets, fine globular dispersion appears upon the diameter of spray casting reaching 4 mm. As for the melt-spun ribbon with the highest cooling rate, a single-phase solid solution microstructure with refined grain of cellular morphology can be obtained, which is attributed to the suppression of liquid phase separation by instant solidification. 展开更多
关键词 rapid solidification immiscible alloy microstructure NUCLEATION growth
下载PDF
Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits,SW China 被引量:41
10
作者 Mei-Fu Zhou Wei Terry Chen +3 位作者 Christina Yan Wang Stephen A.Prevec Patricia Pingping Liu Geoffrey H.Howarth 《Geoscience Frontiers》 SCIE CAS CSCD 2013年第5期481-502,共22页
Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongg... Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongge,and Baima deposits,are well described in the literature and are hosted in layered mafic-ultramafic intrusions in the Panxi region,the central ELIP.The same type of ELIP- related deposits also occur far to the south and include the Anyi deposit,about 130 km south of Panzhihua,and the Mianhuadi deposit in the Red River fault zone.The Anyi deposit is relatively small but is similarly hosted in a layered mafic intrusion.The Mianhuadi deposit has a zircon U-Pb age of~260 Ma and is thus contemporaneous with the ELIP.This deposit was variably metamorphosed during the Indosinian orogeny and Red River faulting.Compositionally,magnetite of the Mianhuadi deposit contains smaller amounts of Ti and V than that of the other deposits,possibly attributable to the later metamorphism.The distribution of the oxide ore deposits is not related to the domal structure of the ELIP.One major feature of all the oxide deposits in the ELIP is the spatial association of oxide-bearing gabbroic intrusions,syenitic plutons and high-Ti flood basalts.Thus,we propose that magmas from a mantle plume were emplaced into a shallow magma chamber where they were evolved into a field of liquid immiscibility to form two silicate liquids,one with an extremely Fe-Ti-rich gabbroic composition and the other syenitic.An immiscible Fe-Ti-(P) oxide melt may then separate from the mafic magmas to form oxide deposits.The parental magmas from which these deposits formed were likely Fe-Ti-rich picritic in composition and were derived from enriched asthenospheric mantle at a greater depth than the magmas that produced sulfide-bearing intrusions of the ELIP. 展开更多
关键词 Fe-Ti oxide Gabbroic layered intrusion immiscible Fe-Ti-(P) rich melt Emeishan Large Igneous Province SW China
下载PDF
Modeling and Simulation of the Microstructure Evolution during a Cooling of Immiscible Alloys in the Miscibility Gap 被引量:8
11
作者 JiuzhouZHAO L.Ratke 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第3期197-205,共9页
The microstructure development during a cooling period of alloys being immiscible in the liquid state such as Al-Pb or AI-Bi has gained renewed scientific and technical interest during the last decades. Experiments ha... The microstructure development during a cooling period of alloys being immiscible in the liquid state such as Al-Pb or AI-Bi has gained renewed scientific and technical interest during the last decades. Experiments have been performed to investigate the phase transformation kinetics in the liquid miscibility gap and numerical models have been developed to simulate and analyze the solidification process. The recently developed computational modeling techniques can, to some extent, be applied to describe the decomposition, the spatial phase separation and the microstructure evolution during a cooling period of an immiscible alloy through the miscibility gap. This article overviews the researches in this field. 展开更多
关键词 immiscible alloy SOLIDIFICATION MICROSTRUCTURE MODELING
下载PDF
Magmatic Ni-Cu-(PGE) deposits in magma plumbing systems:Features,formation and exploration 被引量:9
12
作者 Xieyan Song Yushan Wang Liemeng Chen 《Geoscience Frontiers》 SCIE CAS 2011年第3期375-384,共10页
The three most crucial factors for the formation of large and super-large magmatic sulfide deposits are: (1) a large volume of mantle-derived mafic-ultramafic magmas that participated in the formation of the deposi... The three most crucial factors for the formation of large and super-large magmatic sulfide deposits are: (1) a large volume of mantle-derived mafic-ultramafic magmas that participated in the formation of the deposits; (2) fractional crystallization and crustal contamination, particularly the input of sulfur from crustal rocks, resulting in sulfide immiscibility and segregation; and (3) the timing of sulfide concentration in the intrusion. The super-large magmatic Ni-Cu sulfide deposits around the world have been found in small mafic-ultramafic intrusions, except for the Sudbury deposit. Studies in the past decade indicated that the intrusions hosting large and super-large magmatic sulfide deposits occur in magma conduits, such as those in China, including Jinchuan (Gansu), Yangliuping (Sichuan), Kalatongke (Xinjiang), and Hongqiling (Jilin). Magma conduits as open magma systems provide a perfect environment for extensive concentration of immiscible sulfide melts, which have been found to occur along deep regional faults. The origin of many mantle-derived magmas is closely associated with mantle plumes, intracontinental rifts, or post-collisional extension. Although it has been confirmed that sulfide immiscibility results from crustal contamination, grades of sulfide ores are also related to the nature of the parental magmas, the ratio between silicate magma and immiscible sulfide melt, the reaction between the sulfide melts and newly injected silicate magmas, and fractionation of the sulfide melt. The field relationships of the ore-bearing intrusion and the sulfide ore body are controlled by the geological features of the wall rocks. In this paper, we attempt to demonstrate the general characteristics, formation mechanism,tectonic settings, and indicators of magmatic sulfide deposits occurring in magmatic conduits which would provide guidelines for further exploration. 展开更多
关键词 Magmatic Ni-Cu sulfidedeposit Magma conduit Sulfide immiscibility Tectonic extension China
下载PDF
Reflection and refraction of attenuated waves at boundary of elastic solid and porous solid saturated with two immiscible viscous fluids 被引量:4
13
作者 M.KUMAR R.SAINI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第6期797-816,共20页
The propagation of elastic waves is studied in a porous solid saturated with two immiscible viscous fluids. The propagation of three longitudinal waves is represented through three scalar potential functions. The lone... The propagation of elastic waves is studied in a porous solid saturated with two immiscible viscous fluids. The propagation of three longitudinal waves is represented through three scalar potential functions. The lone transverse wave is presented by a vector potential function. The displacements of particles in different phases of the aggregate are defined in terms of these potential functions. It is shown that there exist three longitudinal waves and one transverse wave. The phenomena of reflection and refraction due to longitudinal and transverse waves at a plane interface between an elastic solid half-space and a porous solid half-space saturated with two immiscible viscous fluids are investigated. For the presence of viscosity in pore-fluids, the waves refracted to the porous medium attenuate in the direction normal to the interface. The ratios of the amplitudes of the reflected and refracted waves to that of the incident wave are calculated as a non- singular system of linear algebraic equations. These amplitude ratios are used to further calculate the shares of different scattered waves in the energy of the incident wave. The modulus of the amplitude and the energy ratios with the angle of incidence are computed for a particular numerical model. The conservation of the energy across the interface is verified. The effects of variations in non-wet saturation of pores and frequencies on the energy partition are depicted graphically and discussed, 展开更多
关键词 dissipative porous solid immiscible viscous fluid elastic wave propagation attenuation reflection and refraction coefficients
下载PDF
Experimental Observation of the Ore-Forming Fluid NaCl-H_2O System in the Earth Interior 被引量:5
14
作者 ZHANG Ronghua and HU Shumin Open Research Laboratory of Geochemical Kinetics, Chinese Academy of Geological Sciences,26 Baiwanzhuang Road, Beijing 100037, China 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1999年第1期47-64,共18页
The NaCl-H_2O binary system is a major component of solutions coexisting with ores. Observation ofsaturated solutions of NaCl-H_2O by using the method of hydrothermal diamond anvil cell (HDAC) is a new approach tothe ... The NaCl-H_2O binary system is a major component of solutions coexisting with ores. Observation ofsaturated solutions of NaCl-H_2O by using the method of hydrothermal diamond anvil cell (HDAC) is a new approach tothe study of ore-forming fluids. The salinities of NaCl-H_2O solutions in experimental observation are in a range of 32-55%. The observed temperature range is 25℃-850℃, and the pressure range 1 atm-10 kb. In this temperature-pressure range, the supercritical single phase, two phases (L,V) close to the critical state and two-phased (L+V) immis-cible region were observed. And for the salinity of 35% the two phase L+V immiscible region of NaCl-H_2O solutionwas observed in a range of 253-720℃. Another temperature range, 400-817℃, was observed for the immiscible two-phased region of 50% salinity solution. In the high-temperature part of the two-phased immiscible region, the phase na-ture is very unstable. A "critical phenomenon" was observed when the heating path was very close to the critical state.It is possible to observe a 'critical phenomenon': an "explosion" occurred almost constantly at the interface between theliquid and vapour and the interface is rather obscure. A continuous transition between phases L and V could be foundin the immiscible L+V phase while heating continuously. Moreover, as the NaCl-H_2O solution was separated into liq-uid and vapour phases, static charges surrounding each vapour bubble could be seen, and these bubbles were attractedtogether by the static charges to form a special solution structure. Besides, critical states of different salinities of NaCl-H_2O were observed in order to study the properties of the fluids occurring in the rocks in the earth interior, the origin ofore-bearing fluids and the significance of supercritical fluid with respect to the ore formation. The comparison of the sa-linity data of the fluid inclusions in the minerals of ore deposits with observations of NaCl-H_2O under HDAC in theconditions of high temperatures and pressures, combined with further thermodynamic analysis of ore-formation condi-tions would explain in depth the factors determining the ore formation. 展开更多
关键词 critical phenomenon solution structure of the two-phased immiscible region ore-forming hydrothermal solutions
下载PDF
Melt-Fluid and Fluid-Fluid Immiscibility in a Na_(2)SO_(4)-SiO_(2)-H_(2)O System and Implications for the Formation of Rare Earth Deposits 被引量:4
15
作者 CUI Hao ZHONG Richen +2 位作者 XIE Yuling WANG Xiaolin CHEN Huan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第5期1604-1610,共7页
Liquid-liquid immiscibility has crucial influences on geological processes,such as magma degassing and formation of ore deposits.Sulfate,as an important component,associates with many kinds of deposits.Two types of im... Liquid-liquid immiscibility has crucial influences on geological processes,such as magma degassing and formation of ore deposits.Sulfate,as an important component,associates with many kinds of deposits.Two types of immiscibility,including(i)fluid-melt immiscibility between an aqueous solution and a sulfate melt,and(ii)fluid-fluid immiscibility between two aqueous fluids with different sulfate concentrations,have been identified for sulfate-water systems.In this study,we investigated the immiscibility behaviors of a sulfate-and quartz-saturated Na_(2)SO_(4)-SiO_(2)-H_(2)O system at elevated temperature,to explore the phase relationships involving both types of immiscibility.The fluid-melt immiscibility appeared first when the Na_(2)SO_(4)-SiO_(2)-H_(2)O sample was heated to~270℃,and then fluid-fluid immiscibility emerged while the sample was further heated to~450℃.At this stage,the coexistence of one water-saturated sulfate melt and two aqueous fluids with distinct sulfate concentrations was observed.The three immiscible phases remain stable over a wide pressure-temperature range,and the appearance temperature of the fluid-fluid immiscibility increases with the increased pressure.Considering that sulfate components occur extensively in carbonatite-related deposits,the fluid-fluid immiscibility can result in significant sulfate fractionation and provides implications for understanding the formation of carbonatite-related rare earth deposits. 展开更多
关键词 geochemistry liquid-liquid immiscibility high sulfate concentration sulfate melt hydrothermal fluids
下载PDF
Effect of high magnetic field on solidification microstructure evolution of a Cu-Fe immiscible alloy 被引量:3
16
作者 Yu-jie Yan Chen Wei +4 位作者 Yi-xuan He Chao Li Ping-xiang Zhang Jin-shan Li Jun Wang 《China Foundry》 SCIE CAS 2022年第4期335-341,共7页
The liquid phase separation behavior and the evolution of the solidification microstructure of a binary Cu_(50)Fe_(50) alloy were investigated under the conditions of without and with a 10 T magnetic field,with differ... The liquid phase separation behavior and the evolution of the solidification microstructure of a binary Cu_(50)Fe_(50) alloy were investigated under the conditions of without and with a 10 T magnetic field,with different undercooling during the solidification process.Results show that the combined effect of Stokes motion and Marangoni convection leads to the formation of the core-shell structure under the condition without the magnetic field.In addition,specific gravity segregation is reinforced by increasing the undercooling,resulting in Fe-rich phase drifts towards the sample edge.In the 10 T magnetic field,the Fe-rich phase is elongated in the parallel direction of the magnetic field under the action of demagnetization energy due to the difference of static magnetic energy and surface energy.In the vertical direction,through the action of Lorentz force,the convection in the melt is inhibited and Fe-rich phase becomes more dispersed.Meanwhile,the diffusion of the two phases and the coagulation of the Fe-rich phases are also restrained under the magnetic field,therefore,the phase volume fraction of the Fe-rich phase decreases at the same undercooling in the 10 T magnetic field.The magnetic field inhibits the segregation behavior in the vertical direction of the magnetic field,and at the same time,improves the gravitational segregation to a certain extent,which has a very important impact on microstructure regulation. 展开更多
关键词 high magnetic field Cu-Fe immiscible alloy UNDERCOOLING SOLIDIFICATION
下载PDF
Calculation of Activity Coefficient from Immiscible Binary Alloy Phase Diagram by Means of Modified Sub-regular Solution Model 被引量:3
17
作者 张兆春 吴铸 +2 位作者 曾文明 陈念贻 彭瑞伍 《Rare Metals》 SCIE EI CAS CSCD 1998年第3期34-38,共5页
The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 a... The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 and λ 2, which are represented as a linear function of temperature, T . The molar excess Gibbs free energy, G m E, can be written in the form G m E= x A x B[( λ 11 + λ 12 T )+( λ 21 + λ 22 T ) x B ] The calculation is carried out numerically for three immiscible binary alloy systems, Al Pb, Cu Tl and In V. The agreement between the calculated and experimentally determined values of activity coefficient is excellent. 展开更多
关键词 Modified sub regular solution model Activity coefficient immiscible binary alloy system
下载PDF
Large-Scale Segregation of Immiscible Liquids in the 1780 Ma Taihang Dykes to Produce the Bimodal Xiong'er Volcanics(North China) 被引量:2
18
作者 PENG Peng WANG Xinping +1 位作者 WANG Chong LAI Yong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期113-,共1页
It is yet unclear whether large-scale segregation of immiscibile liquids and eruption of high-Si lavas exist in nature(Charlier et al.,2013).We present a possible case of segregation of immscible liquids in the 1780 M... It is yet unclear whether large-scale segregation of immiscibile liquids and eruption of high-Si lavas exist in nature(Charlier et al.,2013).We present a possible case of segregation of immscible liquids in the 1780 Ma Taihang 展开更多
关键词 Si high Large-Scale Segregation of immiscible Liquids in the 1780 Ma Taihang Dykes to Produce the Bimodal Xiong’er Volcanics North China
下载PDF
A FINITE ELEMENT COLLOCATION METHOD FOR TWO-PHASE INCOMPRESSIBLE IMMISCIBLE PROBLEMS 被引量:1
19
作者 马宁 《Acta Mathematica Scientia》 SCIE CSCD 2007年第4期875-885,共11页
Two-phase, incompressible, immiscible flow in porous media is governed by a coupled system of nonlinear partial differential equations. The pressure equation is elliptic, whereas the concentration equation is paraboli... Two-phase, incompressible, immiscible flow in porous media is governed by a coupled system of nonlinear partial differential equations. The pressure equation is elliptic, whereas the concentration equation is parabolic, and both are treated by the collocation scheme. Existence and uniqueness of solutions of the algorithm are proved. A optimal convergence analysis is given for the method. 展开更多
关键词 INCOMPRESSIBLE immiscible collocation scheme error estimate
下载PDF
Mathematical model of micropolar fluid in two-phase immiscible fluid flow through porous channel 被引量:1
20
作者 P.K.YADAV S.JAISWAL B.D.SHARMA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第7期993-1006,共14页
This paper is concerned with the flow of two immiscible fluids through a porous horizontal channel. The fluid in the upper region is the micropolar fluid/the Eringen fluid, and the fluid in the lower region is the New... This paper is concerned with the flow of two immiscible fluids through a porous horizontal channel. The fluid in the upper region is the micropolar fluid/the Eringen fluid, and the fluid in the lower region is the Newtonian viscous fluid. The flow is driven by a constant pressure gradient. The presence of micropolar fluids introduces additional rotational parameters. Also, the porous material considered in both regions has two different permeabilities. A direct method is used to obtain the analytical solu- tion of the concerned problem. In the present problem, the effects of the couple stress, the micropolarity parameter, the viscosity ratio, and the permeability on the velocity profile and the microrotational velocity are discussed. It is found that all the physical parameters play an important role in controlling the translational velocity profile and the microrotational velocity. In addition, numerical values of the different flow parameters are computed. The effects of the different flow parameters on the flow rate and the wall shear stress are also discussed graphically. 展开更多
关键词 micropolar fluid immiscible fluid porous medium couple stress microp=olarity parameter
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部