期刊文献+
共找到20,083篇文章
< 1 2 250 >
每页显示 20 50 100
Immobilization of microorganisms using carrageenan gels coated with chitosan and application to biodegradation of 4-chlorophenol 被引量:2
1
作者 Wang Jianlong Li Ping +2 位作者 Shi Hanchang Qian Yi China Zhou Ding 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1997年第3期30-34,共5页
A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanica... A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanical strength and the thermal stability of the carrageenan gel were greatly improved. The new immobilization method was used to entrap a chlorophenol degrading microorganism. The immobilized microbial cells were applied for chlorophenol biodegradation. The experiments demonstrated that immobilized cells exhibit a higher bioactivity in the degradation of chlorophenol than free cells. 展开更多
关键词 CARRAGEENAN CHITOSAN immobilization 4 chlorophenol biodegradation.
下载PDF
Biodegradation of Ammonia Nitrogen Using a Novel Candida sp. Strain N6 Immobilization
2
作者 Kai Wang Yawen Sun +3 位作者 Siqi Li Yingjie Zhang Xiquan Cheng Jun Ma 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第2期10-18,共9页
Due to the high efficiency of ammonia nitrogen degradation,a novel Candida sp.strain N6 was applied for wastewater treatment by using immobilization technology.Immobilization conditions and corresponding ammonia remov... Due to the high efficiency of ammonia nitrogen degradation,a novel Candida sp.strain N6 was applied for wastewater treatment by using immobilization technology.Immobilization conditions and corresponding ammonia removal capacity of immobilized N6 beads were investigated.The immobilized N6 beads were applied to degrade simulated ammonia nitrogen wastewater.Results showed that the optimum formula of immobilized materials was 9%polyvinyl alcohol,1.5%sodium alginate,and 2%calcium chloride,under which the ammonia nitrogen removal rate of the immobilized N6 beads reached 97.97%.The following immobilization conditions were observed to be optimal:the immobilization time was 24 h,the inoculum of N6 was 3%,and the pH was 8.The immobilized N6 beads exhibited excellent ammonianitrogen degradation ability in SBRs.The ammonia nitrogen removal rate was stable at 95%-99%in the SBRs.The results indicated that immobilized N6 beads possess good application prospects in the treatment of ammonia nitrogen wastewater. 展开更多
关键词 AMMONIA wastewater immobilization CANDIDA sp. NITRIFICATION efficiency
下载PDF
Biodegradation of phenol by free and immobilized Acinetobacter sp.strain PD12 被引量:24
3
作者 WANG Ying TIAN Ye +3 位作者 HAN Bin ZHAO Hua-bing BI Jian-nan CAI Bao-li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第2期222-225,共4页
A new phenol-degrading bacterium with high biodegradation activity and high tolerance of phenol, strain PD 12, was isolated from the activated sludge of Tianjin Jizhuangzi Wastewater Treatment Facility in China. This ... A new phenol-degrading bacterium with high biodegradation activity and high tolerance of phenol, strain PD 12, was isolated from the activated sludge of Tianjin Jizhuangzi Wastewater Treatment Facility in China. This strain was capable of removing 500 mg phenol/L in liquid minimal medium by 99.6% within 9 h and metabolizing phenol at concentrations up to 1100 mg/L. DNA sequencing and homologous analysis of 16S rRNA gene identified PD12 to be an Acinetobacter sp. Polyvinyl alcohol (PVA) was used as a gel matrix to immobilize Acinetobacter sp. strain PDI2 by repeated freezing and thawing. The factors affecting phenol degradation of immobilized cells were investigated, and the results showed that the immobilized cells could tolerate a high phenol level and protected the bacteria against changes in temperature and pH. Storage stability and reusability tests revealed that the phenol degradation functions of immobilized cells were stable after reuse for 50 times or storing at 4℃ for 50 d. These results indicate that immobilized Acinetobacter sp. strain PD 12 possesses a good application potential in the treatment of phenol-containing wastewater. 展开更多
关键词 PHENOL biodegradation Acinetobacter sp. PD 12 immobilized bacterium
下载PDF
Biodegradation of benzo[a]pyrene in soil by Mucor sp.SF06 and Bacillus sp.SB02 co-immobilized on vermiculite 被引量:30
4
作者 SU Dan LI Pei-jun +1 位作者 FRANK Stagnitti XIONG Xian-zhe 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第6期1204-1209,共6页
Two indigenous microorganisms, Bacillus sp. SB02 and Mucor sp. SF06, capable of degrading polycyclic aromatic hydrocarbons (PAHs) were co-immobilized on vermiculite by physical adsorption and used to degrade benzo[a... Two indigenous microorganisms, Bacillus sp. SB02 and Mucor sp. SF06, capable of degrading polycyclic aromatic hydrocarbons (PAHs) were co-immobilized on vermiculite by physical adsorption and used to degrade benzo[a] pyrene (BaP). The characteristics of BaP degradation by both free and co-immobilized microorganism were then investigated and compared. The removal rate using the immobilized bacterial-fungal mixed consortium was higher than that of the freely mobile mixed consortium. 95.3% of BaP was degraded using the co-immobilized system within 42 d, which was remarkably higher than the removal rate of that by the free strains. The optimal amount of inoculated co-immobilized system for BaP degradation was 2%. The immobilized bacterial-fungal mixed consortium also showed better water stability than the free strains. Kinetics of BaP biodegradation by co-immobilized SF06 and SB02 were also studied. The results demonstrated that BaP degradation could be well described by a zero-order reaction rate equation when the initial BaP concentration was in the range of 10--200 mg/kg. The scanning electronic microscope (SEM) analysis showed that the co-immobilized microstructure was suitable for the growth of SF06 and SB02. The mass transmission process of co-immobilized system in soil is discussed. The results demonstrate the potential for employing the bacterial-fungal mixed consortium, co-immobilized on vermiculite, for in situ bioremediation of BaP. 展开更多
关键词 biodegradation Bacillus sp. SB02 Mucor sp. SF06 BENZO[A]PYRENE immobilization soil pollution
下载PDF
Comparison of Di-n-methyl Phthalate Biodegradation by Free and Immobilized Microbial Cells 被引量:20
5
作者 JIANLONGWANG YU-CAIYE WEI-ZHONGWU 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2003年第2期126-132,共7页
To compare the biodegradation of di-n-methyl pathalate by free and immobilized microbial cells. Methods The enrichment and isolation technique was used to isolate the microorganism. The PAV-entrapment method was uti... To compare the biodegradation of di-n-methyl pathalate by free and immobilized microbial cells. Methods The enrichment and isolation technique was used to isolate the microorganism. The PAV-entrapment method was utilized to immobilize the microorganisms. The scanning electron microscophy (SEM) was used to observe the growth and distribution of microbial cells immobilized inside the PVA bead gels. The GC/MS method was used to identify the main intermediates of DMP degradation. Results The microbial cells could grow quite well in PVA gel. The metabolic pathway did not change before and after immobilization of the microbial cells. The degradation rate of immobilized cells was higher than that of free cells. Conclusion The immobilized microbial cells possess advantages than free cells when applied to the biodegradation of toxic organic pollutants. 展开更多
关键词 Priority pollutants Phthalic acid ester immobilized microbial cells biodegradation
下载PDF
Biodegradation of oil wastewater by free and immobilized Yarrowia lipolytica W29 被引量:16
6
作者 WU Lan GE Gang WAN Jinbao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第2期237-242,共6页
The ability of Yarrowia lipolytica W29 immobilized by calcium alginate to degrade oil and chemical oxygen demand (COD) was examined. The degradation rules of oil and COD by immobilized cells with the cell density of... The ability of Yarrowia lipolytica W29 immobilized by calcium alginate to degrade oil and chemical oxygen demand (COD) was examined. The degradation rules of oil and COD by immobilized cells with the cell density of 6.65 × 10^6 CFU/mL degraded 2000 mg/L oil and 2000 mg/L COD within 50 h at 30℃ (pH 7.0, 150 r/min), similarly to those of free cells, and the degradation efficiencies of oil and COD by immobilized cells were above 80%, respectively. The factors affecting oil and COD degradation by immobilized cells were investigated, the results showed that immobilized cells had high thermostability compared to that of free cells, and substrate concentration significantly affected degrading ability of immobilized cells. Storage stability and reusability tests revealed that the oil degradation ability of immobilized cells was stable after storing at 4~C for 30 d and reuse for 12 times, respectively, the COD degradation rate of immobilized cells was also maintained 82% at the sixth cycle. These results suggested that immobilized Y lipolytica might be applicable to a wastewater treatment system for the removal of oil and COD. 展开更多
关键词 Yarrowia lipolytica biodegradation oil wastewater calcium alginate
下载PDF
Transcriptomic analysis of molecular mechanisms underlying the biodegradation of organophosphorus pesticide chlorpyrifos by Lactobacillus delbrueckii ssp.bulgaricus in skimmed milk
7
作者 Yue Yang Wenxia Zhou +3 位作者 Lingyu Yang Yilun Chen Dongxiao Sun-Waterhouse Dapeng Li 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期3018-3030,共13页
Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products... Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products remain unclear.This study aimed to help fill this knowledge gap and examined the degradation mechanism of organophosphorus pesticide,chlorpyrifos,in milk by Lactobacillus delbrueckii ssp.bulgaricus using gas chromatography-tandem mass spectrometry(GC-MS/MS)combined with transcriptome analysis.After the strain was cultured for 20 h in the presence of chlorpyrifos,differential expressions of 383 genes were detected,including genes probably implicated during chlorpyrifos degradation such as those related to hydrolase,phosphoesterase,diphosphatase,oxidoreductase,dehydratase,as well as membrane transporters.GC-MS/MS analysis revealed the changes of secondary metabolites in L.bulgaricus during milk fermentation due to chlorpyrifos stress.6-Methylhexahydro-2H-azepin-2-one,2,6-dihydroxypyridine and methyl 2-aminooxy-4-methylpentanoate as intermediates,along with the proposed pathways,might be involved in chlorpyrifos biodegradation by L.bulgaricus. 展开更多
关键词 Lactobacillus delbrueckii ssp.bulgaricus biodegradation CHLORPYRIFOS TRANSCRIPTOMICS METABOLOME
下载PDF
Effects of biodegradation on diamondoid distribution in crude oils from the Bongor Basin,Chad
8
作者 Huanxin Song Menghan Chen +2 位作者 Lirong Dou Dingsheng Cheng Zhigang Wen 《Energy Geoscience》 EI 2024年第2期120-128,共9页
The sensitivity of biodegradation on diamondoids was investigated using a series of biodegraded oil samples from the Ronier tectonic unit of Bongor Basin,Chad.The results suggest that diamondoids,including adamantanes... The sensitivity of biodegradation on diamondoids was investigated using a series of biodegraded oil samples from the Ronier tectonic unit of Bongor Basin,Chad.The results suggest that diamondoids,including adamantanes(As)and diamantanes(Ds),are relatively resistant to biodegradation and obvious biodegradation was observed in oils with a Peters-Moldowan(PM)biodegradation rank of 6 or more.Overall,the sensibility of biodegradation on diamondoids is generally similar to hopanes and regular steranes.As biodegradation evolves,the changes in concentration and components of diamondoids show that the biodegradation process is selective and stepwise.The significant increase of MD/MA and DMD/DMA for oils with a PM ranking 6^(+) indicates that diamantanes are generally more resistant to biodegradation than adamantanes.The similar trends of DMA/MA,EA/MA,MD/D,DMD/MD and other relevant indexes,show that higher alkylation homologs are more resistant to biodegradation.The commonly used diamondoid ratios,such as MAI,EAI,MDI and DMID-1,are obviously affected by biodegradation at the stage of high-level biodegradation,which may indicate that these ratios should be used with caution in case of severely degraded oils. 展开更多
关键词 DIAMONDOIDS biodegradation Sensitivity Crude oil Bongor Basin CHAD
下载PDF
Optical biosensing of monkeypox virus using novel recombinant silica-binding proteins for site-directed antibody immobilization
9
作者 Xixi Song Ying Tao +1 位作者 Sumin Bian Mohamad Sawan 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第10期1496-1504,共9页
The efficient immobilization of capture antibodies is crucial for timely pathogen detection during global pandemic outbreaks.Therefore,we proposed a silica-binding protein featuring core functional domains(cSP).It com... The efficient immobilization of capture antibodies is crucial for timely pathogen detection during global pandemic outbreaks.Therefore,we proposed a silica-binding protein featuring core functional domains(cSP).It comprises a peptide with a silica-binding tag designed to adhere to silica surfaces and tandem protein G fragments(2C2)for effective antibody capture.This innovation facilitates precise site-directed immobilization of antibodies onto silica surfaces.We applied cSP to silica-coated optical fibers,creating a fiber-optic biolayer interferometer(FO-BLI)biosensor capable of monitoring the monkeypox virus(MPXV)protein A29L in spiked clinical samples to rapidly detect the MPXV.The cSP-based FO-BLI biosensor for MPXV demonstrated a limit of detection(LOD)of 0.62 ng/mL in buffer,comparable to the 0.52 ng/mL LOD achieved using a conventional streptavidin(SA)-based FO-BLI biosensor.Furthermore,it achieved LODs of 0.77 ng/mL in spiked serum and 0.80 ng/mL in spiked saliva,exhibiting no cross-reactivity with other viral antigens.The MPXV detection process was completed within 14 min.We further proposed a cSP-based multi-virus biosensor strategy capable of detecting various pandemic strains,such as MPXV,the latest coronavirus disease(COVID)variants,and influenza A protein,to extend its versatility.The proposed cSP-modified FO-BLI biosensor has a high potential for rapidly and accurately detecting MPXV antigens,making valuable contributions to epidemiological studies. 展开更多
关键词 Site-directed immobilization Silica-binding proteins Optical biosensing Monkeypox virus Spiked clinical samples Multi-virus biosensor
下载PDF
Changes in calcium accumulation and utilization efficiency and their impact on recycling,immobilization,and export across the oil palm cycle
10
作者 Ismael de Jesus Matos Viégas Luma Castro de Souza +4 位作者 Eric Victor de Oliveira Ferreira Milton Garcia Costa Glauco André dos Santos Nogueira Vitor Resende do Nascimento Candido Ferreira de Oliveira Neto 《Oil Crop Science》 CSCD 2024年第3期143-150,共8页
Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,a... Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,and recycling in various oil palm organs relative to plant age.The experiment was conducted at the Agropalma enterprise site in the northeastern region of Para State,Brazil,evaluating seven plant age treatments:2,3,4,5,6,7,and 8 years old.Employing a completely randomized design with four replications.The results demonstrated an age-related increase in Ca concentration in petioles,rachis,arrows,male inflorescences,peduncles,and fruits.Furthermore,Ca accumulation exhibited an upward trend in all organs with progressing plant age.Notably,the study revealed an enhanced Ca use efficiency across all plant organs in correlation with the age of oil palm cultivation.These findings underscore the dynamic nutritional demands of oil palm,influencing Ca immobilization,cycling,and export throughout its developmental stages. 展开更多
关键词 Elaeis guineensis Jacq Ca cycling Ca export Ca immobilization Ca use efficiency Plant nutrition AMAZON
下载PDF
Biodegradation of 2,6-ditert-butylphenol by immobilized microorga- nism strains
11
作者 ZHANG Ya-lei ZHANG Zhi-gang +3 位作者 XU De-qiang QIANG Zhi-min LI Guang-ming ZHAO Jian-fu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第2期369-372,共4页
2,6-Ditert-butylphenol (2,6-DTBP) is a major organic contaminant presenting in acrylic fiber manufacturing wastewaters. This compound is of high bio-resistance due to its complex structure which consists of one phen... 2,6-Ditert-butylphenol (2,6-DTBP) is a major organic contaminant presenting in acrylic fiber manufacturing wastewaters. This compound is of high bio-resistance due to its complex structure which consists of one phenol group and two highly branched tert-butyl groups. This research attempted to improve the biodegradation efficiency of 2,6-DTBP through various strain immobilization methods. The stratified immobilization can settle oxygen transmission in the single microorganism immobilization, and can realize two-process reaction in the single device by choosing two symbiotic microorganisms. Two effective strains, named F-1-4 and F-3-4, which were screened out in our previous work, were used to degrade 2,6-DTBP after being immobilized in calcium alginate gel. Results indicate that the substrate removal efficiency of various immobilization methods follows the order: stratified 〉 single F-3-4 〉 mixed ≈single F-1-4. The immobilized biodegradation capacity was higher than the free one. After an incubation time of 12 d, 91% of 2,6-DTBP could be degraded by the stratified immobilization method, compared to 79% achieved by the mixed immobilization method with an initial 2,6-DTBP concentration of 100 mg/L. The stratified immobilization satisfies the oxygen demand nature of the aerobic F-3-4 and the facultative F-1-4, thus yielding the highest degradation efficiency. Both the outer layer strain F-3-4 and the inner layer strain F-1-4 can grow actively on the substrate of 2,6-DTBP, as illustrated by SEM images. This study shows that the highly bio-refractory compound, 2,6-DTBP, can be effectively degraded using appropriately inunobilized microorganism strains. 展开更多
关键词 biodegradation 2 6-ditert-butylphenol immobilization microorganism strains
下载PDF
Comparison of air-borne xylene biodegradation between immobilizedcell biofilter and biofilm attached biofilter
12
作者 刘强 刘学锦 +3 位作者 AROWOLO E Babajide 安太成 傅家谟 盛国英 《Journal of Shanghai University(English Edition)》 CAS 2007年第5期514-520,共7页
The Bacillus firmus was immobilized into Ca-alginate beads according to the different initial biomass concentration, calcification time and activation time. Three types of immobilized Bacillus firmus beads were packed... The Bacillus firmus was immobilized into Ca-alginate beads according to the different initial biomass concentration, calcification time and activation time. Three types of immobilized Bacillus firmus beads were packed respectively in trickling biofilter to purify xylene contained waste gases, and the performance of immobilized-cell biofilter was compared with traditional biofilm attached biofilter packed with two types of ceramic pellets. The results showed that three types of immobilized beads had different capabilities for removing xylene and life-spans. Higher initial biomass in immobilized beads resulted in better performance but shorter life-span. Activation process can remarkably enhance the activity of bacteria, and the removal efficiency of xylene can substantially be improved. Calcification time had influence on life-span of immobilized beads. Without acclimation, the cell-entrapped biofilter can obtain the maximum elimination capacity of 92.4 g/(m^3·h). However, compared with biofilm attached biofilter, it has a poorer intrinsic drawback in volatile organic compounds (VOCs) removal due to the existence of excess mass transfer resistance. 展开更多
关键词 immobilized-cell biofilter biofilm attached biofilter XYLENE biodegradation
下载PDF
Enhanced Biodegradation of High-Salinity and Low- Temperature Crude-Oil Wastewater by Immobilized Crude-Oil Biodegrading Microbiota
13
作者 HUANG Xiao ZHOU Ting +2 位作者 CHEN Xi BAI Jie ZHAO Yangguo 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第1期141-151,共11页
High salt and low temperature are the bottlenecks for the remove of oil contaminants by enriched crude-oil degrading microbiota in Liaohe Estuarine Wetland(LEW),China.To improve the performance of crude-oil removal,mi... High salt and low temperature are the bottlenecks for the remove of oil contaminants by enriched crude-oil degrading microbiota in Liaohe Estuarine Wetland(LEW),China.To improve the performance of crude-oil removal,microbiota was further immobilized by two methods,i.e.,sodium alginate(SA),and polyvinyl alcohol and sodium alginate(PVA+SA).Results showed that the crude oil was effectively removed by the enrichment with an average degrading ratio of 19.42-31.45 mg(L d)^(−1).The optimal inoculum size for the n-alkanes removal was 10%and 99.89%.Some members of genera Acinetobacter,Actinophytocola,Aquabac-terium,Dysgonomonas,Frigidibacter,Sphingobium,Serpens,and Pseudomonas dominated in crude-oil degrading microflora.Though the removal efficiency was lower than free bacteria when the temperature was 15℃,SA and PVA+SA immobilization im-proved the resistance to salinity.The composite crude-oil degrading microbiota in this study demonstrated a perspective potential for crude oil removal from surface water under high salinity and low temperature conditions. 展开更多
关键词 crude-oil degrading microbiota microbial community immobilization high salinity low temperature
下载PDF
Processing of Aniline Aerofloat Wastewater with SBR System and Its Biodegradation Mechanism 被引量:4
14
作者 宋卫锋 陈小清 +2 位作者 严明 唐铁柱 李神勇 《Agricultural Science & Technology》 CAS 2013年第7期1032-1036,共5页
ObjectiveThis study aimed to investigate the biodegradation effect and biodegradation mechanism of aniline aerofloat wastewater. MethodSmall-scale processing of simulated aniline aerofloat wastewater was carried out w... ObjectiveThis study aimed to investigate the biodegradation effect and biodegradation mechanism of aniline aerofloat wastewater. MethodSmall-scale processing of simulated aniline aerofloat wastewater was carried out with SBR (Sequencing Batch Reactor) system; intermediate products in the process were analyzed using high-performance liquid chromatography. ResultAccording to the experimental results, the small-scale process was basically stably operated after 40 days of activation and regulation, leading to relatively ideal degradation effect on aniline aerofloat, the COD removal efficiency reached 64.3% , degradation rate of aniline aerofloat reached 93.4%, which could be applied in the treatment of mine flotation wastewater containing such pollutant. During the degradation process, pH increased from 5.83 to 6.60 and then dropped to 6.17, which might be caused by the thiocyanate ions and aniline generated in the degradation process. Aniline aerofloat mainly produced two preliminary products during the biodegradation process: aniline and a substance that was difficult to be biodegraded under aerobic conditions, which was the main reason for the relatively high COD value in effluent. Furthermore, aniline was eventually biodegraded. ConclusionThis study provided basis for the development of biological treatment of flotation wastewater in China and showed great significance for the improvement of ecological environment around the mines. 展开更多
关键词 Aniline aerofloat SBR High-performance liquid chromatography (HPLC) biodegradation mechanism
下载PDF
Isolation, Identification and Biodegradation Characteristics of a Phthalate Ester Degrading Bacterium
15
作者 张敏 吴祥为 张付海 《Agricultural Science & Technology》 CAS 2015年第7期1363-1366,共4页
By using plate screening techniques with five phthalate esters (DMP, DEP, DBP, DEHP and DOP) as energy and carbon sources, an active strain was isolated from the sediments of Chaohu Lake, which was identified as Bur... By using plate screening techniques with five phthalate esters (DMP, DEP, DBP, DEHP and DOP) as energy and carbon sources, an active strain was isolated from the sediments of Chaohu Lake, which was identified as Burkholderia pickettil and named B. pickettii.z-1. The biodegradation of five phthalate esters by B. pick- ettii.z-1 strain was in accordance with the pseudo first-order kinetic equation: Ct = C0.e-kt. As the concentration of phthalate esters increased, the degradation rate of phthalate esters was reduced. B. pickettii.z-1 strain exhibited remarkably different degradation effects on various PAEs. Specifically, short-side-chain DMP and DEP were degraded rapidly, while long-side-chain DBP and DEHP were degraded slowly. 展开更多
关键词 Phthalate esters MICROORGANISMS biodegradation kinetics
下载PDF
Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel 被引量:35
16
作者 ZHANG Li-sheng WU Wei-zhong WANG Jian-long 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第11期1293-1297,共5页
The microbial immobilization method using polyvinyl alcohol (PVA) gel as an immobilizing material was improved and used for entrapment of activated sludge. The oxygen uptake rate (OUR) was used to characterize the... The microbial immobilization method using polyvinyl alcohol (PVA) gel as an immobilizing material was improved and used for entrapment of activated sludge. The oxygen uptake rate (OUR) was used to characterize the biological activity of immobilized activated sludge. Three kinds of PVA-immobilized particles of activated sludge, that is, PVA-boric acid beads, PVA-sodium nitrate beads and PVA-orthophosphate beads were prepared, and their biological activity was compared by measuring the OUR value. The bioactivity of both autotrophic and heterotrophic microorganisms of activated sludge was determined using different synthetic wastewater media (containing 250 mg/L COD and 25 mg/L NH4^+ -N). The experimental results showed that the bioactivity and stability of the three kinds of immobilized activated sludge was greatly improved after activation. With respect of the bioactivity and the mechanical stability, the PVA-orthophosphate method may be a promising and economical technique for microbial immobilization. 展开更多
关键词 immobilization biological activity oxygen uptake rate (OUR) polyvinyl alcohol (PVA)
下载PDF
Immobilization study of biosorption of heavy metal ions onto activated sludge 被引量:14
17
作者 WUHai-suo ZHANGAi-qiang WANGLian-sheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第4期640-645,共6页
Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10\_100 m... Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10\_100 mg/L was studied by using both entrapped activated sludge and inactivated free biomass at pH≤5. A biphasic metal adsorption pattern was observed in all immobilized biomass experiments. The biosorption of metal ions by the biosorbents increased with the initial concentration increased in the medium. The adsorption rate of immobilized pre-treated activated sludge(PAS) was much lower than that of free PAS due to the increase in mass transfer resistance resulting from the polymeric matrix. Biosorption equilibrium of beads was established in about 20 h and the adsorbed heavy metal ions did not change further with time. No significant effect of temperature was observed in the test for free biomass while immobilized PAS appeared to be strong temperature dependent in the test range of 10 and 40℃. Besides, the content of activated sludge in the calcium alginate bead has an influence on the uptake of heavy metals. The sorption equilibrium was well modeled by Langmuir isotherm, implying monomolecular adsorption mechanism. Carboxyl group in cell wall played an important role in surface adsorption of heavy metal ions on PAS. 展开更多
关键词 BIOSORPTION alginate beads immobilization heavy metal activated sludge wastewater treatment
下载PDF
Nitrobenzene biodegradation ability of microbial communities in water and sediments along the Songhua River after a nitrobenzene pollution event 被引量:14
18
作者 LI Zonglai YANG Min LI Dong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第7期778-786,共9页
More than 100 t of nitrobenzene (NB) and related compounds were discharged into the Songhua River,the fourth longest river in China,because of the world-shaking explosion of an aniline production factory located in Ji... More than 100 t of nitrobenzene (NB) and related compounds were discharged into the Songhua River,the fourth longest river in China,because of the world-shaking explosion of an aniline production factory located in Jilin City on November 13,2005.As one of the efforts to predict the fate of residual NB in the river,NB biodegradation abilities by microbes in the water and sediments from different river sections were evaluated systematically.The results indicated that microbial communities from any section of ... 展开更多
关键词 NITROBENZENE the Songhua River pollution accident biodegradation low temperature
下载PDF
Optimizing aerobic biodegradation of dichloromethane using response surface methodology 被引量:13
19
作者 WU Shijin,YU Xiang,HU Zhihang,ZHANG Lili,CHEN Jianmeng College of Biological and Environmental Engineering,Zhejiang University of Technology,Hangzhou 310032,China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第9期1276-1283,共8页
Response surface methodology (RSM) was employed to evaluate the optimum aerobic biodegradation of dichloromethane (DCM) in pure culture. The parameters investigated include the initial DCM concentration, glucose a... Response surface methodology (RSM) was employed to evaluate the optimum aerobic biodegradation of dichloromethane (DCM) in pure culture. The parameters investigated include the initial DCM concentration, glucose as an inducer and hydrogen peroxide as terminal electron acceptor (TEA). Maximum aerobic biodegradation efficiency was predicted to occur when the initial DCM concentration was 380 mg/L, glucose 13.72 mg/L, and H202 115 mg/L. Under these conditions the aerobic biodegradation rate reached up to 93.18%, which was significantly higher than that obtained under original conditions. Without addition of glucose degradation efficiencies were ≤ 80% at DCM concentrations ≤ 326 mg/L. When concentrations of DCM were more than 480 rag/L, the addition of hydrogen peroxide did not help to significantly increase DCM degradation efficiency. When DCM concentrations increased from 240 to 480 rag/L, the overall DCM degradation efficiency decreased from 91% to 60% in the presence of HaO2 for 120 mg/L. 展开更多
关键词 biodegradation DICHLOROMETHANE response surface methodology
下载PDF
Biodegradation of methyl parathion by Acinetobacter radioresistens USTB-04 被引量:18
20
作者 LIU Fang-yao HONG Ming-zhang LIU Dan-mei LI Ya-wen SHOU Pei-shun YAN Hai SHI Guo-qing 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第10期1257-1260,共4页
Biodegradation of methyl parathion (MP), a widely used organophosphorus pesticide, was investigated using a newly isolated bacterium strain Acinetobacter radioresistens USTB-04. MP at an initial concentration of 120... Biodegradation of methyl parathion (MP), a widely used organophosphorus pesticide, was investigated using a newly isolated bacterium strain Acinetobacter radioresistens USTB-04. MP at an initial concentration of 1200 mg/L could be totally biodegraded by A. radioresistens USTB-04 as the sole carbon source less than 4 d in the presence of phosphate and urea as phosphorus and nitrogen sources, respectively. Biodegradation of MP was also achieved using cell-free extract of A. radioresistens USTB-04. MP at an initial concentration of 130 mg/L was completely biodegraded in 2 h in the presence of cell-free extract with a protein concentration of 148.0 mg/L, which was increased with the increase of pH from 5.0 to 8.0. Contrary to published reports, no intermediate or final degradation metabolites of MP could be observed. Thus we suggest that the cleavage of C-C bond on the benzene ring other than P-O bond may be the biodegradation pathway of MP by A. radioresistens USTB-04. 展开更多
关键词 Acinetobacter radioresistens USTB-04 biodegradation methyl parathion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部