Atherosclerosis is a chronic inflammatory disease arising from lipids, specifically low-density lipoproteins, and leukocytes. Following the activation of endothelium with the expression of adhesion molecules and monoc...Atherosclerosis is a chronic inflammatory disease arising from lipids, specifically low-density lipoproteins, and leukocytes. Following the activation of endothelium with the expression of adhesion molecules and monocytes, inflammatory cytokines from macrophages, and plasmacytoid dendritic cells, high levels of interferon(IFN)-α and β are generated upon the activation of tolllike receptor-9, and T-cells, especially the ones with Th1 profile, produce pro-inflammatory mediators such as IFN-γ and upregulate macrophages to adhere to the endothelium and migrate into the intima. This review presents an exhaustive account for the role of immunecells in the atherosclerosis.展开更多
AIM To compare the capacity of newly developed epidermal growth factor receptor(EGFR)-targeted immune magnetic liposomes(EILs) vs epithelial cell adhesion molecule(Ep CAM) immunomagnetic beads to capture colorectal ci...AIM To compare the capacity of newly developed epidermal growth factor receptor(EGFR)-targeted immune magnetic liposomes(EILs) vs epithelial cell adhesion molecule(Ep CAM) immunomagnetic beads to capture colorectal circulating tumor cells(CTCs).METHODS EILs were prepared using a two-step method, and the magnetic and surface characteristics were confirmed. The efficiency of capturing colorectal CTCs as well as the specificity were compared between EILs and Ep CAM magnetic beads. RESULTS The obtained EILs had a lipid nanoparticle structure similar to cell membrane. Improved binding with cancer cells was seen in EILs compared with the method of coupling nano/microspheres with antibody. The binding increased as the contact time extended. Compared with Ep CAM immunomagnetic beads, EILs captured more CTCs in peripheral blood from colorectal cancer patients. The captured cells showed consistency with clinical diagnosis and pathology. Mutation analysis showed same results between captured CTCs and cancer tissues. CONCLUSION EGFR antibody-coated magnetic liposomes show high efficiency and specificity in capturing colorectal CTCs.展开更多
This review discussed the relationship among copper,human,and bacteria.Copper plays an important role in human immunity.Copper can boost human immune defense reactions at recommended intake level.The content mainly fo...This review discussed the relationship among copper,human,and bacteria.Copper plays an important role in human immunity.Copper can boost human immune defense reactions at recommended intake level.The content mainly focused on copper antibacterial activity and copper antibacterial mechanisms.Conclusions stated that copper antibacterial activity is affected by copper homeostasis mechanisms in bacteria,adhesion,humidity,strain specificity,and manufacturing methods of antibacterial agents.For the preparation of particle antibacterial agents and surface antibacterial agents,this review discussed several manufacturing methods,such as sol−gel,cold spray,and biosynthesis belonging to chemical synthesis,physical synthesis,and biological synthesis,respectively.Sol−gel method contributes to the preparation of particle agents and surface agents.Cold spray technique is utilized in synthesis of surface copper agent.Biosynthesis is a novel technology which can be applied in nanoparticle agent preparation.展开更多
Protein energy malnutrition is the main cause of immunodeficiency and, secondarily, of several infections. However, immune cell activation is involved in several pathophysiological processes that play a crucial role i...Protein energy malnutrition is the main cause of immunodeficiency and, secondarily, of several infections. However, immune cell activation is involved in several pathophysiological processes that play a crucial role in the appearance of cardiovascular disease(CVD) or cancer. The aim of this review is to update the knowledge of the modulation of immune cell activation by different dietary patterns and its components focusing on CVD or cancer. While a westernized high-saturated fat highcarbohydrate diet is positively associated with lowgrade inflammation, vegetable- and fruit-based diets rich in monounsaturated fatty acids, polyunsaturated fatty acids and polyphenols, key nutrients of Mediterranean diet, decrease the levels of cellular and circulating inflammatory biomarkers thereby reducing the risk of related chronic diseases.展开更多
Objective: To study the correlation of body mass index with Th1/Th2 balance, adhesion molecules and insulin signal transduction in infertile patients. Methods: A total of 132 patients who received diagnostic curettage...Objective: To study the correlation of body mass index with Th1/Th2 balance, adhesion molecules and insulin signal transduction in infertile patients. Methods: A total of 132 patients who received diagnostic curettage due to infertility in Tangshan Maternal and Child Health Hospital between June 2015 and March 2016 were selected as the research subjects and divided into the normal group with BMI<25 kg/m2, the overweight group with BMI 25-30 kg/m2 and the obesity group with BMI > 30 kg/m2 according to BMI, and the levels of Th1/Th2 cytokines in serum as well as the expression of Th1/Th2 transcription factors, adhesion molecules and insulin signal pathway molecules in endometrial tissue were detected. Results:IFN-γ and TNF-α levels in serum of obesity group and overweight group were significantly higher than those of control group while IL-4, IL-5 and IL-13 levels in serum as well as CD44V6, N-cadherin, FAK, ICAM-1, GLUT-4, IRS-1, PI3K and AKT mRNA expression in endometrial tissue were significantly lower than those of control group;IFN-γ and TNF-α levels in serum of obesity group were significantly higher than those of overweight group while IL-4, IL-5 and IL-13 levels in serum as well as CD44V6, N-cadherin, FAK, ICAM-1, GLUT-4, IRS-1, PI3K and AKT mRNA expression in endometrial tissue were significantly lower than those of overweight group. Conclusion: Weight gain can aggravate the Th1/Th2 disorder, reduce the adhesion molecule expression and hinder the insulin signal transduction in infertile patients.展开更多
Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them.Various mechanisms deregulate adhesion molecules in cancer,enabling tumor c...Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them.Various mechanisms deregulate adhesion molecules in cancer,enabling tumor cells to proliferate without restraint,invade through tissue boundaries,escape from immune surveillance,and survive in the tumor microenvironment.Recent studies have revealed that adhesion molecules also drive angiogenesis,reshape metabolism,and are involved in stem cell self-renewal.In this review,we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment,as well as the therapeutic strategies targeting adhesion molecules.These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.展开更多
Mucosal vaccines that stimulate both mucosal and systemic immune responses are desirable,as they could prevent the invading pathogens at their initial infection sites in a convenient and userfriendly way. Nanovaccines...Mucosal vaccines that stimulate both mucosal and systemic immune responses are desirable,as they could prevent the invading pathogens at their initial infection sites in a convenient and userfriendly way. Nanovaccines are receiving increasing attention for mucosal vaccination due to their merits in overcoming mucosal immune barriers and in enhancing immunogenicity of the encapsulated antigens.Herein, we summarized several nanovaccine strategies that have been reported for enhancing mucosal immune responses, including designing nanovaccines that have superior mucoadhesion and mucus penetration capacity, designing nanovaccines with better targeting efficiency to M cells or antigen-presenting cells, and co-delivering adjuvants by using nanovaccines. The reported applications of mucosal nanovaccines were also briefly discussed, including prevention of infectious diseases, and treatment of tumors and autoimmune diseases. Future research progresses in mucosal nanovaccines may promote the clinical translation and application of mucosal vaccines.展开更多
文摘Atherosclerosis is a chronic inflammatory disease arising from lipids, specifically low-density lipoproteins, and leukocytes. Following the activation of endothelium with the expression of adhesion molecules and monocytes, inflammatory cytokines from macrophages, and plasmacytoid dendritic cells, high levels of interferon(IFN)-α and β are generated upon the activation of tolllike receptor-9, and T-cells, especially the ones with Th1 profile, produce pro-inflammatory mediators such as IFN-γ and upregulate macrophages to adhere to the endothelium and migrate into the intima. This review presents an exhaustive account for the role of immunecells in the atherosclerosis.
文摘AIM To compare the capacity of newly developed epidermal growth factor receptor(EGFR)-targeted immune magnetic liposomes(EILs) vs epithelial cell adhesion molecule(Ep CAM) immunomagnetic beads to capture colorectal circulating tumor cells(CTCs).METHODS EILs were prepared using a two-step method, and the magnetic and surface characteristics were confirmed. The efficiency of capturing colorectal CTCs as well as the specificity were compared between EILs and Ep CAM magnetic beads. RESULTS The obtained EILs had a lipid nanoparticle structure similar to cell membrane. Improved binding with cancer cells was seen in EILs compared with the method of coupling nano/microspheres with antibody. The binding increased as the contact time extended. Compared with Ep CAM immunomagnetic beads, EILs captured more CTCs in peripheral blood from colorectal cancer patients. The captured cells showed consistency with clinical diagnosis and pathology. Mutation analysis showed same results between captured CTCs and cancer tissues. CONCLUSION EGFR antibody-coated magnetic liposomes show high efficiency and specificity in capturing colorectal CTCs.
基金financial support from the fund of State Key Laboratory of Powder Metallurgy,Central South University,China
文摘This review discussed the relationship among copper,human,and bacteria.Copper plays an important role in human immunity.Copper can boost human immune defense reactions at recommended intake level.The content mainly focused on copper antibacterial activity and copper antibacterial mechanisms.Conclusions stated that copper antibacterial activity is affected by copper homeostasis mechanisms in bacteria,adhesion,humidity,strain specificity,and manufacturing methods of antibacterial agents.For the preparation of particle antibacterial agents and surface antibacterial agents,this review discussed several manufacturing methods,such as sol−gel,cold spray,and biosynthesis belonging to chemical synthesis,physical synthesis,and biological synthesis,respectively.Sol−gel method contributes to the preparation of particle agents and surface agents.Cold spray technique is utilized in synthesis of surface copper agent.Biosynthesis is a novel technology which can be applied in nanoparticle agent preparation.
文摘Protein energy malnutrition is the main cause of immunodeficiency and, secondarily, of several infections. However, immune cell activation is involved in several pathophysiological processes that play a crucial role in the appearance of cardiovascular disease(CVD) or cancer. The aim of this review is to update the knowledge of the modulation of immune cell activation by different dietary patterns and its components focusing on CVD or cancer. While a westernized high-saturated fat highcarbohydrate diet is positively associated with lowgrade inflammation, vegetable- and fruit-based diets rich in monounsaturated fatty acids, polyunsaturated fatty acids and polyphenols, key nutrients of Mediterranean diet, decrease the levels of cellular and circulating inflammatory biomarkers thereby reducing the risk of related chronic diseases.
文摘Objective: To study the correlation of body mass index with Th1/Th2 balance, adhesion molecules and insulin signal transduction in infertile patients. Methods: A total of 132 patients who received diagnostic curettage due to infertility in Tangshan Maternal and Child Health Hospital between June 2015 and March 2016 were selected as the research subjects and divided into the normal group with BMI<25 kg/m2, the overweight group with BMI 25-30 kg/m2 and the obesity group with BMI > 30 kg/m2 according to BMI, and the levels of Th1/Th2 cytokines in serum as well as the expression of Th1/Th2 transcription factors, adhesion molecules and insulin signal pathway molecules in endometrial tissue were detected. Results:IFN-γ and TNF-α levels in serum of obesity group and overweight group were significantly higher than those of control group while IL-4, IL-5 and IL-13 levels in serum as well as CD44V6, N-cadherin, FAK, ICAM-1, GLUT-4, IRS-1, PI3K and AKT mRNA expression in endometrial tissue were significantly lower than those of control group;IFN-γ and TNF-α levels in serum of obesity group were significantly higher than those of overweight group while IL-4, IL-5 and IL-13 levels in serum as well as CD44V6, N-cadherin, FAK, ICAM-1, GLUT-4, IRS-1, PI3K and AKT mRNA expression in endometrial tissue were significantly lower than those of overweight group. Conclusion: Weight gain can aggravate the Th1/Th2 disorder, reduce the adhesion molecule expression and hinder the insulin signal transduction in infertile patients.
基金supported by the National Natural Science Foundation of China(82203163)the Natural Science Foundation of Hunan Province(2022JJ40660)+1 种基金the Natural Science Foundation of Changsha(kq2202123)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)。
文摘Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them.Various mechanisms deregulate adhesion molecules in cancer,enabling tumor cells to proliferate without restraint,invade through tissue boundaries,escape from immune surveillance,and survive in the tumor microenvironment.Recent studies have revealed that adhesion molecules also drive angiogenesis,reshape metabolism,and are involved in stem cell self-renewal.In this review,we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment,as well as the therapeutic strategies targeting adhesion molecules.These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.
基金supported by National Natural Science Foundation of China (Grant Nos. 81925036 & 82003684)China Postdoctoral Science Foundation Grant (2019M663534, China)+3 种基金the Key Research and Development Program of Science and Technology Department of Sichuan Province (No. 2020YFS0570, China)Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System (CARS-SVDIP, China)the Fundamental Research Funds for the Central UniversitiesSichuan University Postdoctoral Interdisciplinary Innovation Fund。
文摘Mucosal vaccines that stimulate both mucosal and systemic immune responses are desirable,as they could prevent the invading pathogens at their initial infection sites in a convenient and userfriendly way. Nanovaccines are receiving increasing attention for mucosal vaccination due to their merits in overcoming mucosal immune barriers and in enhancing immunogenicity of the encapsulated antigens.Herein, we summarized several nanovaccine strategies that have been reported for enhancing mucosal immune responses, including designing nanovaccines that have superior mucoadhesion and mucus penetration capacity, designing nanovaccines with better targeting efficiency to M cells or antigen-presenting cells, and co-delivering adjuvants by using nanovaccines. The reported applications of mucosal nanovaccines were also briefly discussed, including prevention of infectious diseases, and treatment of tumors and autoimmune diseases. Future research progresses in mucosal nanovaccines may promote the clinical translation and application of mucosal vaccines.