An improved artificial immune algorithm with a dynamic threshold is presented. The calculation for the affinity function in the real-valued coding artificial immune algorithm is modified through considering the antib...An improved artificial immune algorithm with a dynamic threshold is presented. The calculation for the affinity function in the real-valued coding artificial immune algorithm is modified through considering the antibody's fitness and setting the dynamic threshold value. Numerical experiments show that compared with the genetic algorithm and the originally real-valued coding artificial immune algorithm, the improved algorithm possesses high speed of convergence and good performance for preventing premature convergence.展开更多
Objective To explore the dynamic changes of the cellular immune function in severe infection after liver transplantation,and to guide the individualized immunology adjustment. Methods 378 cases of liver transplantatio...Objective To explore the dynamic changes of the cellular immune function in severe infection after liver transplantation,and to guide the individualized immunology adjustment. Methods 378 cases of liver transplantation were analyzed retrospectively. Seventy - four cases ( infection group) suffered serious infection,including 54 cases cured ( cure group) ,20 cases died (展开更多
Considering the actual behavior of people’s short-term travel,we propose a dynamic small-world community network model with tunable community strength which has constant local links and time varying long-range jumps....Considering the actual behavior of people’s short-term travel,we propose a dynamic small-world community network model with tunable community strength which has constant local links and time varying long-range jumps.Then an epidemic model of susceptible-infected-recovered is established based on the mean-field method to evaluate the inhibitory effects of avoidance and immunization on epidemic spreading.And an approximate formula for the epidemic threshold is obtained by mathematical analysis.The simulation results show that the epidemic threshold decreases with the increase of inner-community motivation rate and inter-community long-range motivation rate,while it increases with the increase of immunization rate or avoidance rate.It indicates that the inhibitory effect on epidemic spreading of immunization works better than that of avoidance.展开更多
In this paper, an SIRS epidemic model with high-risk immunization was investigated, where a susceptible neighbor of an infected node is immunized with rate h. Through analyzing the discrete-time model, we found that t...In this paper, an SIRS epidemic model with high-risk immunization was investigated, where a susceptible neighbor of an infected node is immunized with rate h. Through analyzing the discrete-time model, we found that the epidemic threshold above which an epidemic can prevail and persist in a population is inversely proportional to 1 - h value. We also studied the continuous-time epidemic model and obtained a different result: the epidemic threshold does not depend on the immunization parameter h. Our results suggest that the difference between the discrete-time epidemic model and the continuous-time epidemic model exists in the high-risk immunization.展开更多
文摘An improved artificial immune algorithm with a dynamic threshold is presented. The calculation for the affinity function in the real-valued coding artificial immune algorithm is modified through considering the antibody's fitness and setting the dynamic threshold value. Numerical experiments show that compared with the genetic algorithm and the originally real-valued coding artificial immune algorithm, the improved algorithm possesses high speed of convergence and good performance for preventing premature convergence.
文摘Objective To explore the dynamic changes of the cellular immune function in severe infection after liver transplantation,and to guide the individualized immunology adjustment. Methods 378 cases of liver transplantation were analyzed retrospectively. Seventy - four cases ( infection group) suffered serious infection,including 54 cases cured ( cure group) ,20 cases died (
基金Supported by the National Natural Science Foundation of China(61374180,61373136,61304169)the Research Foundation for Humanities and Social Sciences of Ministry of Education,China(12YJAZH120)+1 种基金the Six Projects Sponsoring Talent Summits of Jiangsu Province,China(RLD201212)the Natural Science Foundation of Anhui Province(1608085MF127)
文摘Considering the actual behavior of people’s short-term travel,we propose a dynamic small-world community network model with tunable community strength which has constant local links and time varying long-range jumps.Then an epidemic model of susceptible-infected-recovered is established based on the mean-field method to evaluate the inhibitory effects of avoidance and immunization on epidemic spreading.And an approximate formula for the epidemic threshold is obtained by mathematical analysis.The simulation results show that the epidemic threshold decreases with the increase of inner-community motivation rate and inter-community long-range motivation rate,while it increases with the increase of immunization rate or avoidance rate.It indicates that the inhibitory effect on epidemic spreading of immunization works better than that of avoidance.
基金This research is supported by the National Natural Science Foundation of China (No. 61203153).
文摘In this paper, an SIRS epidemic model with high-risk immunization was investigated, where a susceptible neighbor of an infected node is immunized with rate h. Through analyzing the discrete-time model, we found that the epidemic threshold above which an epidemic can prevail and persist in a population is inversely proportional to 1 - h value. We also studied the continuous-time epidemic model and obtained a different result: the epidemic threshold does not depend on the immunization parameter h. Our results suggest that the difference between the discrete-time epidemic model and the continuous-time epidemic model exists in the high-risk immunization.