期刊文献+
共找到185篇文章
< 1 2 10 >
每页显示 20 50 100
Lake Eutrophic Evaluation Based on Bee Immune Evolutionary Algorithm 被引量:1
1
作者 党媛 李祚泳 邹艳玲 《Agricultural Science & Technology》 CAS 2010年第4期156-158,188,共4页
In order to establish the lake eutrophic evaluation model for multiple indices,based on the gauge transformation,an index formula in the form of a logarithmic power function was proposed to design an eutrophic evaluat... In order to establish the lake eutrophic evaluation model for multiple indices,based on the gauge transformation,an index formula in the form of a logarithmic power function was proposed to design an eutrophic evaluation model for the " normalized values" of multi-indexes.The parameters in the formula were also optimized by bee immune evolutionary algorithm(BEIEA).The universal index formula was suitable to multiindices items for eutrophic evaluation.At the same time,the formula was applied to practical eutrophic evaluations in 10 regions of Dong Lake.The evaluation results were coincident with those obtained from the power function of weighted sums and also with actual conditions.It was shown that the bee immune evolutionary algorithm was suitable to the parameter optimization in the eutrophic evaluation model. 展开更多
关键词 LAKE Eutrophic evaluation Bee algorithm Bee immune evolutionary algorithm Parameter optimization
下载PDF
Immune evolutionary algorithms with domain knowledge for simultaneous localization and mapping 被引量:4
2
作者 李枚毅 蔡自兴 《Journal of Central South University of Technology》 EI 2006年第5期529-535,共7页
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de... Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms. 展开更多
关键词 immune evolutionary algorithms simultaneous localization and mapping domain knowledge
下载PDF
Adaptive Immune Evolutionary Algorithms Based on Immune Network Regulatory Mechanism 被引量:3
3
作者 何宏 钱锋 《Journal of Donghua University(English Edition)》 EI CAS 2007年第1期141-145,共5页
Based on immune network regulatory mechanism, a new adaptive immune evolutionary algorithm (AIEA) is proposed to improve the performance of genetic algorithms (GA) in this paper. AIEA adopts novel selection operation ... Based on immune network regulatory mechanism, a new adaptive immune evolutionary algorithm (AIEA) is proposed to improve the performance of genetic algorithms (GA) in this paper. AIEA adopts novel selection operation according to the stimulation level of each antibody. A memory base for good antibodies is devised simultaneously to raise the convergent rapidity of the algorithm and adaptive adjusting strategy of antibody population is used for preventing the loss of the population adversity. The experiments show AIEA has better convergence performance than standard genetic algorithm and is capable of maintaining the adversity of the population and solving function optimization problems in an efficient and reliable way. 展开更多
关键词 evolutionary algorithm immune network ADAPTATION stimulation level.
下载PDF
Immune Genetic Algorithm for Optimal Design 被引量:2
4
作者 杨建国 李蓓智 项前 《Journal of Donghua University(English Edition)》 EI CAS 2002年第4期16-19,共4页
A computing model employing the immune and genetic algorithm (IGA) for the optimization of part design is presented. This model operates on a population of points in search space simultaneously, not on just one point.... A computing model employing the immune and genetic algorithm (IGA) for the optimization of part design is presented. This model operates on a population of points in search space simultaneously, not on just one point. It uses the objective function itself, not derivative or any other additional information and guarantees the fast convergence toward the global optimum. This method avoids some weak points in genetic algorithm, such as inefficient to some local searching problems and its convergence is too early. Based on this model, an optimal design support system (IGBODS) is developed.IGBODS has been used in practice and the result shows that this model has great advantage than traditional one and promises good application in optimal design. 展开更多
关键词 automation artificial immune system (AIS) Optimal design evolutionary algorithm GENETIC algorithm
下载PDF
Elitism-based immune genetic algorithm and its application to optimization of complex multi-modal functions 被引量:4
5
作者 谭冠政 周代明 +1 位作者 江斌 DIOUBATE Mamady I 《Journal of Central South University of Technology》 EI 2008年第6期845-852,共8页
A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody s... A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism. 展开更多
关键词 immune genetic algorithm multi-modal function optimization evolutionary computation elitist selection elitist crossover
下载PDF
Self-adaptive learning based immune algorithm 被引量:1
6
作者 许斌 庄毅 +1 位作者 薛羽 王洲 《Journal of Central South University》 SCIE EI CAS 2012年第4期1021-1031,共11页
A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned prc,blems with the high robustness. The SALIA algorithm ad... A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned prc,blems with the high robustness. The SALIA algorithm adopted a mutation strategy pool which consists of four effective mutation strategies to generate new antibodies. A self-adaptive learning framework is implemented to select the mutation strategies by learning from their previous performances in generating promising solutions. Twenty-six state-of-the-art optimization problems with different characteristics, such as uni-modality, multi-modality, rotation, ill-condition, mis-scale and noise, are used to verify the validity of SALIA. Experimental results show that the novel algorithm SALIA achieves a higher universality and robustness than clonal selection algorithms (CLONALG), and the mean error index of each test function in SALIA decreases by a factor of at least 1.0×10^7 in average. 展开更多
关键词 immune algorithm multi-modal optimization evolutionary computation immtme secondary response self-adaptivelearning
下载PDF
基于免疫进化算法(IEA)的鹤望兰(Strelitzia reginae)叶面积指数(LAI)模拟 被引量:5
7
作者 杨怀金 叶芝祥 +2 位作者 朱克云 钱妙芬 杨迎春 《生态学报》 CAS CSCD 北大核心 2006年第8期2744-2748,共5页
免疫进化算法(IEA)是基于遗传算法(GA)的一种“加强局部搜索,兼顾全局搜索”的进化算法。利用免疫进化算法(IEA)对鹤望兰叶面积指数(LAI)进行模拟,平均相对误差为3·44%,取得满意的结果,对鹤望兰栽培管理有一定的实际意义。免疫进... 免疫进化算法(IEA)是基于遗传算法(GA)的一种“加强局部搜索,兼顾全局搜索”的进化算法。利用免疫进化算法(IEA)对鹤望兰叶面积指数(LAI)进行模拟,平均相对误差为3·44%,取得满意的结果,对鹤望兰栽培管理有一定的实际意义。免疫进化算法用于鹤望兰叶面积指数模拟简便、易行,为鹤望兰叶面积指数模拟模型的建立及参数优化开辟了一条新途径。 展开更多
关键词 鹤望兰 免疫进化算法(iea) 叶面积指数(LAI) 模拟
下载PDF
基于IEA优化的农药降解GM(1,1)预测模型 被引量:5
8
作者 杨怀金 叶芝祥 +1 位作者 徐成华 杨迎春 《农业环境科学学报》 CAS CSCD 北大核心 2007年第4期1469-1472,共4页
将免疫进化算法(IEA)和灰色系统理论结合起来,建立了农药降解的IEA-GM(1,1)预测模型,分别对喹噁硫磷在豇豆中的残留量、代森锰锌在西红柿中的消解动态、粉锈宁在麦穗中的残留量、抗蚜威在黄瓜果实中的残留量进行预测。结果表明,IEA-GM(1... 将免疫进化算法(IEA)和灰色系统理论结合起来,建立了农药降解的IEA-GM(1,1)预测模型,分别对喹噁硫磷在豇豆中的残留量、代森锰锌在西红柿中的消解动态、粉锈宁在麦穗中的残留量、抗蚜威在黄瓜果实中的残留量进行预测。结果表明,IEA-GM(1,1)预测模型拟合精度和拟合效果明显优于其他模型,而且该模型不受时间等距条件的限制,建模时不用进行时间变换,可用于预测施药后任意时刻的农药残留量。IEA和灰色系统理论同时用于农药降解建模原理直观、简便、易行,为农药在生态环境中降解规律和降解模型的研究提供了一条新的途径。 展开更多
关键词 免疫进化算法(iea) 农药降解 GM(1 1)模型
下载PDF
IEA-PNN模型在水质预测中的应用 被引量:5
9
作者 陈媛 胡恒 王文圣 《水电能源科学》 北大核心 2010年第5期22-25,共4页
采用免疫进化算法(IEA)对概率神经网络(PNN)模型参数进行优化,并应用于水质预测中。以黄河小浪底至花园口段为例,使用该模型预测水体中的COD和NH3-N浓度。预测结果表明,IEA-PNN模型应用于水质预测切实可行,能同时实现分类预测和定量预测... 采用免疫进化算法(IEA)对概率神经网络(PNN)模型参数进行优化,并应用于水质预测中。以黄河小浪底至花园口段为例,使用该模型预测水体中的COD和NH3-N浓度。预测结果表明,IEA-PNN模型应用于水质预测切实可行,能同时实现分类预测和定量预测,且预测精度较高。 展开更多
关键词 概率神经网络模型 免疫进化算法 水质 定量预测
下载PDF
基于IEA的需水预测投影寻踪模型研究 被引量:3
10
作者 张灵 陈晓宏 刘青娥 《灌溉排水学报》 CSCD 北大核心 2008年第1期73-76,共4页
需水预测是一个由城市人口、工业水平、社会经济水平共同作用的多因素、多层次的复杂非线性系统,其结果将直接影响受区域水资源承载力约束的产业结构、布局形态等决策。PP方法通过投影将高维数据转换为低维数据,克服了维数祸根问题,能... 需水预测是一个由城市人口、工业水平、社会经济水平共同作用的多因素、多层次的复杂非线性系统,其结果将直接影响受区域水资源承载力约束的产业结构、布局形态等决策。PP方法通过投影将高维数据转换为低维数据,克服了维数祸根问题,能在一定程度上解决分类、函数逼近和时间序列预测等问题。将PP方法引入需水预测领域,建立了需水预测PP模型。同时,将免疫进化算法和PP耦合起来,简化了参数优化运算。在珠海市的应用实例表明:PP模型较好地解决了高维非线性和非正态问题,在需水预测中有较强适用性。 展开更多
关键词 需水预测 投影寻踪 免疫进化算法 BP神经网络
下载PDF
基于IEA-PNN的边坡岩体稳定性预测研究 被引量:2
11
作者 熊建秋 李祚泳 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2005年第A01期4924-4928,共5页
概率神经网络是一种训练速度快、结构简洁明了、应用广泛的人工神经网络,该方法采用贝叶斯分类决策理论建立系统的数学模型,以高斯函数作为激励函数,具有非线性处理和抗干扰能力强等特点。阐述了概率神经网络的基本结构及其训练算法... 概率神经网络是一种训练速度快、结构简洁明了、应用广泛的人工神经网络,该方法采用贝叶斯分类决策理论建立系统的数学模型,以高斯函数作为激励函数,具有非线性处理和抗干扰能力强等特点。阐述了概率神经网络的基本结构及其训练算法,提出了基于概率神经网络的边坡岩体稳定性预测方法,并采用一种新的有效随机全局优化技术——免疫进化算法对高斯型函数的标准偏差进行了参数优化。介绍了免疫进化算法的设计思想和特点,并成功地实现了此模型在边坡岩体稳定性预测中的应用,实例预测结果与边坡稳定性实际状态完全一致。理论分析和实例结果验证了基于免疫进化算法的边坡岩体稳定性预测方法切实可行,且具有需要学习样本少、预测精度高、非线性动态数据处理能力强等优点,为边坡稳定性预测提供了一条新的途径。 展开更多
关键词 岩土力学 边坡岩体稳定性 预测 概率神经网络 免疫进化算法
下载PDF
IEA-PPR用于降水的pH值预测模型构建 被引量:7
12
作者 姜微 罗晓虹 +2 位作者 姜林 印家健 李梦龙 《化学研究与应用》 CAS CSCD 北大核心 2005年第4期545-547,共3页
The main idea and algorithm of the projection pursuit regression(PPR)based on immune evolutionary algorithm(IEA)are introduced to study the data of the Dongguan’s precipitation of 2003.The model of PPR was built to p... The main idea and algorithm of the projection pursuit regression(PPR)based on immune evolutionary algorithm(IEA)are introduced to study the data of the Dongguan’s precipitation of 2003.The model of PPR was built to predict the pH value in precipitation.The result shows this method is steady and has good prediction precision,and has a better prediction result than that of MLR. 展开更多
关键词 投影寻踪回归 免疫进化算法 降水pH值预测
下载PDF
Reconstruction of Gene Regulatory Networks Based on Two-Stage Bayesian Network Structure Learning Algorithm 被引量:4
13
作者 Gui-xia Liu, Wei Feng, Han Wang, Lei Liu, Chun-guang ZhouCollege of Computer Science and Technology, Jilin University, Changchun 130012,P.R. China 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第1期86-92,共7页
In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task i... In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task in bioinformatics.The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages,but how to determine the network structure and parameters is still important to be explored.This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network.The new algorithm is evaluated with the use of both simulated and yeast cell cycle data.The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy. 展开更多
关键词 gene regulatory networks two-stage learning algorithm Bayesian network immune evolutionary algorithm
下载PDF
ERBF network with immune clustering
14
作者 宫新保 臧小刚 周希朗 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期315-318,共4页
Based on immune clustering and evolutionary programming(EP), a hybrid algorithm to train the RBF network is proposed. An immune fuzzy C-means clustering algorithm (IFCM) is used to adaptively specify the amount and in... Based on immune clustering and evolutionary programming(EP), a hybrid algorithm to train the RBF network is proposed. An immune fuzzy C-means clustering algorithm (IFCM) is used to adaptively specify the amount and initial positions of the RBF centers according to input data set; then the RBF network is trained with EP that tends to global optima. The application of the hybrid algorithm in multiuser detection problem demonstrates that the RBF network trained with the algorithm has simple network structure with good generalization ability. 展开更多
关键词 immune clustering algorithm evolutionary programming RBF network.
下载PDF
A Mixed Real-time Algorithm for the Forward Kinematics of Stewart Parallel Manipulator
15
作者 王孙安 万亚民 《Journal of Electronic Science and Technology of China》 2006年第2期173-180,共8页
Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Fi... Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical. 展开更多
关键词 stewart parallel manipulator forward kinematics immune evolutionary algorithm numerical iterative scheme real-time control
下载PDF
Application of Particle Swarm Algorithm in the Optimal Allocation of Regional Water Resources Based on Immune Evolutionary Algorithm 被引量:4
16
作者 屈国栋 楼章华 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第5期634-640,共7页
The optimal allocation model of regional water resources is built with the purpose of maximizing the comprehensive economic,social and environmental benefits of regional water consumption.In order to solve the problem... The optimal allocation model of regional water resources is built with the purpose of maximizing the comprehensive economic,social and environmental benefits of regional water consumption.In order to solve the problems that easily appear during the model solution of regional water resource optimal allocation with multiple water sources,multiple users and multiple objectives like"curse of dimensionality"or sinking into local optimum,this paper proposes a particle swarm optimization(PSO)algorithm based on immune evolutionary algorithm(IEA).This algorithm introduces immunology principle into particle swarm algorithm.Its immune memorizing and self-adjusting mechanism is utilized to keep the particles in the fitness level at a certain concentration and guarantee the diversity of population.Also,the global search characteristics of IEA and the local search capacity of particle swarm algorithm have been fully utilized to overcome the dependence of PSO on initial swarm and the deficiency of vulnerability to local optimum.After applying this model to the allocation of water resources in Zhoukou,we obtain the scheme for optimization allocation of water resources in the planning level years,i.e.2015and 2025 under the guarantee rate of 50%.The calculation results indicate that the application of this algorithm to solve the issue of optimal allocation of regional water resources is reliable and reasonable.Thus it ofers a new idea for solving the issue of optimal allocation of water resources. 展开更多
关键词 immune evolutionary algorithm(iea) particle swarm optimization(PSO) water resources optimal allocation
原文传递
基于免疫进化算法的计算机课程线上教学资源推荐方法
17
作者 李党恩 《信息与电脑》 2024年第1期49-51,共3页
传统计算机课程线上教学资源推荐方法的平均绝对误差较高,为此设计基于免疫进化算法的线上教学资源推荐方法。利用免疫进化算法构建线上教学资源推荐模型,设计计算机课程线上教学资源推荐引擎,完成线上教学资源推荐。实验结果表明,该方... 传统计算机课程线上教学资源推荐方法的平均绝对误差较高,为此设计基于免疫进化算法的线上教学资源推荐方法。利用免疫进化算法构建线上教学资源推荐模型,设计计算机课程线上教学资源推荐引擎,完成线上教学资源推荐。实验结果表明,该方法的平均绝对误差较低,优于对照组,具有可靠性。 展开更多
关键词 免疫进化算法 计算机课程 线上教学 资源推荐
下载PDF
免疫进化聚类算法 被引量:43
18
作者 刘静 钟伟才 +1 位作者 刘芳 焦李成 《电子学报》 EI CAS CSCD 北大核心 2001年第z1期1868-1872,共5页
本文在分析经典聚类算法和基于遗传的聚类算法的优越性与存在不足的基础上 ,提出了一种新的聚类算法———免疫进化聚类算法 .该算法不仅有效地克服了经典聚类算法易陷入局部极小值和对初始化敏感的缺点 ,并且减轻了基于遗传的聚类算法... 本文在分析经典聚类算法和基于遗传的聚类算法的优越性与存在不足的基础上 ,提出了一种新的聚类算法———免疫进化聚类算法 .该算法不仅有效地克服了经典聚类算法易陷入局部极小值和对初始化敏感的缺点 ,并且减轻了基于遗传的聚类算法在遗传后期的波动现象 .仿真实验表明 ,该算法的聚类正确率比基于遗传的聚类算法平均高 8~ 展开更多
关键词 聚类分析 FCM 遗传算法 免疫进化算法
下载PDF
人工免疫算法及其应用 被引量:32
19
作者 谢克明 郭红波 +1 位作者 谢刚 续欣莹 《计算机工程与应用》 CSCD 北大核心 2005年第20期77-80,84,共5页
阐述了人工免疫系统的基本概念,讨论了几种典型的算法,包括基于免疫系统基本机制的免疫算法、基于免疫特异性的否定选择算法、基于免疫系统克隆选择理论的克隆选择算法、基于接种疫苗及免疫多样性的免疫进化算法、AIS与神经网络混合智... 阐述了人工免疫系统的基本概念,讨论了几种典型的算法,包括基于免疫系统基本机制的免疫算法、基于免疫特异性的否定选择算法、基于免疫系统克隆选择理论的克隆选择算法、基于接种疫苗及免疫多样性的免疫进化算法、AIS与神经网络混合智能算法和模糊免疫系统等;以年代为序简述了AIS发展历史,介绍了AIS在若干具有代表性的领域中的应用情况。最后通过对AIS的特性和存在问题的分析,展望了今后的研究重点和发展趋势。 展开更多
关键词 人工免疫系统 免疫算法 否定和克隆选择 免疫进化 模糊免疫
下载PDF
进化多目标优化算法研究 被引量:399
20
作者 公茂果 焦李成 +1 位作者 杨咚咚 马文萍 《软件学报》 EI CSCD 北大核心 2009年第2期271-289,共19页
进化多目标优化主要研究如何利用进化计算方法求解多目标优化问题,已经成为进化计算领域的研究热点之一.在简要总结2003年以前的主要算法后,着重对进化多目标优化的最新进展进行了详细讨论.归纳出当前多目标优化的研究趋势,一方面,粒子... 进化多目标优化主要研究如何利用进化计算方法求解多目标优化问题,已经成为进化计算领域的研究热点之一.在简要总结2003年以前的主要算法后,着重对进化多目标优化的最新进展进行了详细讨论.归纳出当前多目标优化的研究趋势,一方面,粒子群优化、人工免疫系统、分布估计算法等越来越多的进化范例被引入多目标优化领域,一些新颖的受自然系统启发的多目标优化算法相继提出;另一方面,为了更有效的求解高维多目标优化问题,一些区别于传统Pareto占优的新型占优机制相继涌现;同时,对多目标优化问题本身性质的研究也在逐步深入.对公认的代表性算法进行了实验对比.最后,对进化多目标优化的进一步发展提出了自己的看法. 展开更多
关键词 多目标优化 进化算法 PARETO占优 粒子群优化 人工免疫系统 分布估计算法
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部