MicroRNAs(miRNAs) are critical regulators of the host immune and inflammatory response against bacterial pathogens. In the present review, we discuss target genes, target gene functions, the potential regulatory role ...MicroRNAs(miRNAs) are critical regulators of the host immune and inflammatory response against bacterial pathogens. In the present review, we discuss target genes, target gene functions, the potential regulatory role of miRNAs in periodontal tissues, and the potential role of miRNAs as biomarkers and therapeutics. In periodontal disease, miRNAs exert control over all aspects of innate and adaptive immunity, including the functions of neutrophils, macrophages, dendritic cells and T and B cells. Previous human studies have highlighted some key miRNAs that are dysregulated in periodontitis patients. In the present study, we mapped the major miRNAs that were altered in our reproducible periodontitis mouse model relative to control animals. The miRNAs that were upregulated as a result of periodontal disease in both human and mouse studies included miR-15 a, miR-29 b, miR-125 a, miR-146 a,miR-148/148 a and miR-223, whereas miR-92 was downregulated. The association of individual miRNAs with unique aspects of periodontal disease and their stability in gingival crevicular fluid underscores their potential as markers for periodontal disease progression or healthy restitution. Moreover, miRNA therapeutics hold great promise for the future of periodontal therapy because of their ability to modulate the immune response to infection when applied in conjunction with synthetic antagomirs and/or relatively straightforward delivery strategies.展开更多
In some species of growing mammals glutamine is an essential amino acid that,if inadequate in the diet,is needed for normal growth and development.It is thus sometimes considered to be a conditionally essential amino ...In some species of growing mammals glutamine is an essential amino acid that,if inadequate in the diet,is needed for normal growth and development.It is thus sometimes considered to be a conditionally essential amino acid in some species.A review of studies that have measured L-glutamine concentrations([glutamine])in horses demonstrates that plasma[glutamine]has routinely been reported to be much lower(~330μmol/L)than in other mammals(>600μmol/L).Plasma[glutamine]represents the balance between intestinal transport into the blood after hepatic first pass,tissue synthesis and cellular extraction.The hypothesis is proposed that sustained low plasma[glutamine]represents a chronic state of sub-optimal glutamine intake and glutamine synthesis that does not meet the requirements for optimum health.While this may be without serious consequence in feral and sedentary horses,there is evidence that provision of supplemental dietary glutamine ameliorates a number of health consequences,particularly in horses with elevated metabolic demands.The present review provides evidence that glutamine is very important(and perhaps essential)for intestinal epithelial cells in mammals including horses,that horses with low plasma[glutamine]represents a sub-optimal state of well-being,and that horses supplemented with glutamine exhibit physiological and health benefits.展开更多
It is widely known that branched chain amino acids(BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA(isoleucine, le...It is widely known that branched chain amino acids(BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA(isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the m TOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including:(1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis.(2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters.(3)Supplementation of leucine in the diet enhances meat quality in finishing pigs.(4) BCAA are beneficial for mammary health, milk quality and embryo growth.(5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production.(6) BCAA participate in up-regulating innate and adaptive immune responses.In addition, abnormally elevated BCAA levels in the blood(decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.展开更多
The researchers demonstrate the development of a novel Prodosome technology-derived PL425 PEC phytonutrient-enriched electrolyte formulation and its significant contribution in fluid homeostasis as well as enhanced ne...The researchers demonstrate the development of a novel Prodosome technology-derived PL425 PEC phytonutrient-enriched electrolyte formulation and its significant contribution in fluid homeostasis as well as enhanced neuromuscular function, cardio-protection, pulmonary, and other physiological cellular and organ functions. Electrolytes enriched in phytonutrients including polyphenolic bioflavonoids, anthocyanins, saccharides, sulforaphanes, carotenoids and exotic spices, in conjunction with a full spectrum of sea water-derived electrolytes, such as sodium, chloride, potassium, calcium, phosphate, magnesium and bicarbonate, along with vitamin C, all of which are encapsulated in the proprietary Prodosome technology enabling enhanced bioavailability. This technology will maintain important biological functions including metabolic and energy homeostasis, pH equilibration, free radical inhibition, cell-to-cell communication, muscular integrity, enhanced neuronal, cardiovascular, pulmonary, and kidney functions. Moreover, these phytonutrients and electrolytes enhance energy metabolism, ATP production, and activate nitric oxide production without L-Arginine. Ongoing research studies are in progress.展开更多
文摘MicroRNAs(miRNAs) are critical regulators of the host immune and inflammatory response against bacterial pathogens. In the present review, we discuss target genes, target gene functions, the potential regulatory role of miRNAs in periodontal tissues, and the potential role of miRNAs as biomarkers and therapeutics. In periodontal disease, miRNAs exert control over all aspects of innate and adaptive immunity, including the functions of neutrophils, macrophages, dendritic cells and T and B cells. Previous human studies have highlighted some key miRNAs that are dysregulated in periodontitis patients. In the present study, we mapped the major miRNAs that were altered in our reproducible periodontitis mouse model relative to control animals. The miRNAs that were upregulated as a result of periodontal disease in both human and mouse studies included miR-15 a, miR-29 b, miR-125 a, miR-146 a,miR-148/148 a and miR-223, whereas miR-92 was downregulated. The association of individual miRNAs with unique aspects of periodontal disease and their stability in gingival crevicular fluid underscores their potential as markers for periodontal disease progression or healthy restitution. Moreover, miRNA therapeutics hold great promise for the future of periodontal therapy because of their ability to modulate the immune response to infection when applied in conjunction with synthetic antagomirs and/or relatively straightforward delivery strategies.
文摘In some species of growing mammals glutamine is an essential amino acid that,if inadequate in the diet,is needed for normal growth and development.It is thus sometimes considered to be a conditionally essential amino acid in some species.A review of studies that have measured L-glutamine concentrations([glutamine])in horses demonstrates that plasma[glutamine]has routinely been reported to be much lower(~330μmol/L)than in other mammals(>600μmol/L).Plasma[glutamine]represents the balance between intestinal transport into the blood after hepatic first pass,tissue synthesis and cellular extraction.The hypothesis is proposed that sustained low plasma[glutamine]represents a chronic state of sub-optimal glutamine intake and glutamine synthesis that does not meet the requirements for optimum health.While this may be without serious consequence in feral and sedentary horses,there is evidence that provision of supplemental dietary glutamine ameliorates a number of health consequences,particularly in horses with elevated metabolic demands.The present review provides evidence that glutamine is very important(and perhaps essential)for intestinal epithelial cells in mammals including horses,that horses with low plasma[glutamine]represents a sub-optimal state of well-being,and that horses supplemented with glutamine exhibit physiological and health benefits.
基金supported by the National Key Basic Research Program(S.Y.Q.,Grant Number 2012CB124704)
文摘It is widely known that branched chain amino acids(BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA(isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the m TOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including:(1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis.(2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters.(3)Supplementation of leucine in the diet enhances meat quality in finishing pigs.(4) BCAA are beneficial for mammary health, milk quality and embryo growth.(5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production.(6) BCAA participate in up-regulating innate and adaptive immune responses.In addition, abnormally elevated BCAA levels in the blood(decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.
文摘The researchers demonstrate the development of a novel Prodosome technology-derived PL425 PEC phytonutrient-enriched electrolyte formulation and its significant contribution in fluid homeostasis as well as enhanced neuromuscular function, cardio-protection, pulmonary, and other physiological cellular and organ functions. Electrolytes enriched in phytonutrients including polyphenolic bioflavonoids, anthocyanins, saccharides, sulforaphanes, carotenoids and exotic spices, in conjunction with a full spectrum of sea water-derived electrolytes, such as sodium, chloride, potassium, calcium, phosphate, magnesium and bicarbonate, along with vitamin C, all of which are encapsulated in the proprietary Prodosome technology enabling enhanced bioavailability. This technology will maintain important biological functions including metabolic and energy homeostasis, pH equilibration, free radical inhibition, cell-to-cell communication, muscular integrity, enhanced neuronal, cardiovascular, pulmonary, and kidney functions. Moreover, these phytonutrients and electrolytes enhance energy metabolism, ATP production, and activate nitric oxide production without L-Arginine. Ongoing research studies are in progress.