A novel algorithm, the Immune Quantum-inspired Genetic Algorithm (IQGA), is proposed by introducing immune concepts and methods into Quantum-inspired Genetic Algorithm (QGA). With the condition of preserving QGA's...A novel algorithm, the Immune Quantum-inspired Genetic Algorithm (IQGA), is proposed by introducing immune concepts and methods into Quantum-inspired Genetic Algorithm (QGA). With the condition of preserving QGA's advantages, IQGA utilizes the characteristics and knowledge in the pending problems for restraining the repeated and ineffective operations during evolution, so as to improve the algorithm efficiency. The experimental results of the knapsack problem show that the performance of IQGA is superior to the Conventional Genetic Algorithm (CGA), the Immune Genetic Algorithm (IGA) and QGA.展开更多
Liver transplantation has become standard practice for treating end-stage liver disease.The success of the procedure relies on effective immunosuppressive medications to control the host's immune response.Despite ...Liver transplantation has become standard practice for treating end-stage liver disease.The success of the procedure relies on effective immunosuppressive medications to control the host's immune response.Despite the liver's inherent capacity to foster tolerance,the early post-transplant period is marked by significant immune reactivity.To ensure favorable outcomes,it is imperative to identify and manage various rejection types,encompassing T-cell-mediated,antibody-mediated,and chronic rejection.However,the approach to prescribing immunosuppressants relies heavily on clinical judgment rather than evidencebased criteria.Given that the majority of patients will require lifelong immunosuppression as the mechanisms underlying operational tolerance are still being investigated,healthcare providers must possess an understanding of immune responses,rejection mechanisms,and the pathways targeted by immunosuppressive drugs.This knowledge enables customization of treatments and improved patient care,even though a consensus on an optimal immunosuppressive regimen remains elusive.展开更多
Based on Immune Programming(IP), a novel Radial Basis Function (RBF) networkdesigning method is proposed. Through extracting the preliminary knowledge about the widthof the basis function as the vaccine to form the im...Based on Immune Programming(IP), a novel Radial Basis Function (RBF) networkdesigning method is proposed. Through extracting the preliminary knowledge about the widthof the basis function as the vaccine to form the immune operator, the algorithm reduces thesearching space of canonical algorithm and improves the convergence speed. The application ofthe RBF network trained with the algorithm in the modulation-style recognition of radar signalsdemonstrates that the network has a fast convergence speed with good performances.展开更多
An engineering microburst model to generate the microburst wind field for virtual flight simulation has been presented. The model is built as a finite viscosity vortex core model based on the vortex ring theory consid...An engineering microburst model to generate the microburst wind field for virtual flight simulation has been presented. The model is built as a finite viscosity vortex core model based on the vortex ring theory considering the air viscosity,and it can solve the problem of induced velocity discontinuity at the inner region near the vortex core. Moreover,the central axis velocity is obtained by turbulence free jet theory so as to avoid the singularity.The parameters in multiple-vortex-ring microburst model are determined by improved quantum genetic algorithm( QGA) based on immune and mutation operator,and the parameters optimization of the model under condition of different maximum vertical velocity are investigated. The results show that the microburst model is effective and accurate. The simulation results fit the preset value very well,and the error is controlled within 10^(- 7).展开更多
基金Supported by the National Natural Science Foundation of China (No.60133010 and No.60141002).
文摘A novel algorithm, the Immune Quantum-inspired Genetic Algorithm (IQGA), is proposed by introducing immune concepts and methods into Quantum-inspired Genetic Algorithm (QGA). With the condition of preserving QGA's advantages, IQGA utilizes the characteristics and knowledge in the pending problems for restraining the repeated and ineffective operations during evolution, so as to improve the algorithm efficiency. The experimental results of the knapsack problem show that the performance of IQGA is superior to the Conventional Genetic Algorithm (CGA), the Immune Genetic Algorithm (IGA) and QGA.
文摘Liver transplantation has become standard practice for treating end-stage liver disease.The success of the procedure relies on effective immunosuppressive medications to control the host's immune response.Despite the liver's inherent capacity to foster tolerance,the early post-transplant period is marked by significant immune reactivity.To ensure favorable outcomes,it is imperative to identify and manage various rejection types,encompassing T-cell-mediated,antibody-mediated,and chronic rejection.However,the approach to prescribing immunosuppressants relies heavily on clinical judgment rather than evidencebased criteria.Given that the majority of patients will require lifelong immunosuppression as the mechanisms underlying operational tolerance are still being investigated,healthcare providers must possess an understanding of immune responses,rejection mechanisms,and the pathways targeted by immunosuppressive drugs.This knowledge enables customization of treatments and improved patient care,even though a consensus on an optimal immunosuppressive regimen remains elusive.
文摘Based on Immune Programming(IP), a novel Radial Basis Function (RBF) networkdesigning method is proposed. Through extracting the preliminary knowledge about the widthof the basis function as the vaccine to form the immune operator, the algorithm reduces thesearching space of canonical algorithm and improves the convergence speed. The application ofthe RBF network trained with the algorithm in the modulation-style recognition of radar signalsdemonstrates that the network has a fast convergence speed with good performances.
基金National Natural Science Foundation of China(No.61032001)
文摘An engineering microburst model to generate the microburst wind field for virtual flight simulation has been presented. The model is built as a finite viscosity vortex core model based on the vortex ring theory considering the air viscosity,and it can solve the problem of induced velocity discontinuity at the inner region near the vortex core. Moreover,the central axis velocity is obtained by turbulence free jet theory so as to avoid the singularity.The parameters in multiple-vortex-ring microburst model are determined by improved quantum genetic algorithm( QGA) based on immune and mutation operator,and the parameters optimization of the model under condition of different maximum vertical velocity are investigated. The results show that the microburst model is effective and accurate. The simulation results fit the preset value very well,and the error is controlled within 10^(- 7).