期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Optimization of virtual machine placement based on constrained immune memory and immunodominance clone in IaaS cloud mode equipment training
1
作者 Zhijia Chen Yuanchang Zhu +1 位作者 Yanqiang Di Shaochong Feng 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2017年第1期109-133,共25页
In infrastructure as a service(IaaS)cloud mode equipment simulated training,to keep the resource utilization ratio in a rational high level,improve the training effect and reduce the system running cost,the problem of... In infrastructure as a service(IaaS)cloud mode equipment simulated training,to keep the resource utilization ratio in a rational high level,improve the training effect and reduce the system running cost,the problem of training virtual machine(TVM)placement needs to be resolved first.We make analysis to the problem and give the mathematical formulation to the problem.Then,we figure out the principle and target of the TVM placement.Based on above analysis,we propose a constrained immune memory and immunodominance clone(CIMIC)TVM placement optimization algorithm.By reverse optimization of the initial antibody population,the searching range is reduced.The common antibody population and the immunodominance antibody population evolve simultaneously,which realizes the simultaneous progressing of global searching and local searching of solutions.Further,local optimal is avoided by this means.Memory antibody makes ful use of the unfeasible solutions and the diversity of antibody population is maintained.The constraint information of the problem is utilized to improve the optimization effect.Experiment results show that the CIMIC algorithm improves the overall optimization effect of TVM placement,reduces the server number and improves the resource utilization and system stability. 展开更多
关键词 IaaS cloud mode training TVM placement constrained optimization immune memory immunodominance clone
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部